Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability

Journal of Materials Chemistry A - Tập 4 Số 46 - Trang 18067-18074
Jing Yang1,2,3,4,5, Xiaofeng Li1,2,3,4,5, Shuang Han1,2,3,4,5, Yiting Zhang1,2,3,4,5, Min Peng1,6,2,3,5, Nikhil Koratkar7,8, Zhong‐Zhen Yu1,6,2,3,5
1Beijing 100029
2Beijing University of Chemical Technology
3China
4College of Materials Science and Engineering
5State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
6Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
7Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, USA
8Rensselaer Polytechnic Institute

Tóm tắt

Air-dried, high-density graphene hybrid aerogels are fabricated for phase change composites with exceptional thermal conductivity and shape stability.

Từ khóa


Tài liệu tham khảo

Zhang, 2014, Laser Phys. Lett., 11, 035901, 10.1088/1612-2011/11/3/035901

Deng, 2015, Angew. Chem., Int. Ed., 54, 2100, 10.1002/anie.201409524

Yang, 2016, ACS Appl. Mater. Interfaces, 8, 2297, 10.1021/acsami.5b11337

Han, 2013, Adv. Funct. Mater., 23, 3693, 10.1002/adfm.201202601

Ding, 2014, Carbon, 66, 576, 10.1016/j.carbon.2013.09.041

Wang, 2008, Nano Lett., 8, 323, 10.1021/nl072838r

Balandin, 2008, Nano Lett., 8, 902, 10.1021/nl0731872

Stoller, 2008, Nano Lett., 8, 3498, 10.1021/nl802558y

Lee, 2008, Science, 321, 385, 10.1126/science.1157996

Xu, 2010, ACS Nano, 4, 4324, 10.1021/nn101187z

Chen, 2011, Adv. Mater., 23, 5679, 10.1002/adma.201102838

Wan, 2014, Adv. Funct. Mater., 24, 4915, 10.1002/adfm.201303815

Menzel, 2015, Adv. Funct. Mater., 25, 28, 10.1002/adfm.201401807

Chen, 2011, Nat. Mater., 10, 424, 10.1038/nmat3001

Tang, 2014, Carbon, 77, 592, 10.1016/j.carbon.2014.05.063

Li, 2014, Adv. Mater., 26, 4789, 10.1002/adma.201400657

Cong, 2012, ACS Nano, 6, 2693, 10.1021/nn300082k

Tang, 2010, Angew. Chem., Int. Ed., 49, 4603, 10.1002/anie.201000270

Liu, 2016, Carbon, 100, 456, 10.1016/j.carbon.2016.01.038

Worsley, 2014, Adv. Funct. Mater., 24, 4259, 10.1002/adfm.201400316

Tao, 2013, Sci. Rep., 3, 2975, 10.1038/srep02975

Yang, 2015, J. Mater. Chem. A, 3, 19268, 10.1039/C5TA06452J

Li, 2016, Adv. Mater., 28, 1510, 10.1002/adma.201504317

Du, 2016, ACS Nano, 10, 453, 10.1021/acsnano.5b05373

Yang, 2016, Carbon, 98, 50, 10.1016/j.carbon.2015.10.082

Xin, 2014, ACS Appl. Mater. Interfaces, 6, 15262, 10.1021/am503619a

Shahil, 2012, Nano Lett., 12, 861, 10.1021/nl203906r

Fang, 2013, Energy Fuels, 27, 4041, 10.1021/ef400702a

Yu, 2007, J. Phys. Chem. C, 111, 7565, 10.1021/jp071761s

Yu, 2008, Adv. Mater., 20, 4740, 10.1002/adma.200800401

Gu, 2014, Polym. Compos., 35, 1087, 10.1002/pc.22702

Shi, 2013, Carbon, 51, 365, 10.1016/j.carbon.2012.08.068

Zhong, 2013, Sol. Energy Mater. Sol. Cells, 113, 195, 10.1016/j.solmat.2013.01.046

Sari, 2007, Appl. Therm. Eng., 27, 1271, 10.1016/j.applthermaleng.2006.11.004

Tang, 2015, RSC Adv., 5, 55170, 10.1039/C5RA08010J

Noma, 2014, Carbon, 78, 204, 10.1016/j.carbon.2014.06.073

Hummers, 1958, J. Am. Chem. Soc., 80, 1339, 10.1021/ja01539a017

Zhang, 2011, J. Mater. Chem., 21, 6494, 10.1039/c1jm10239g

Huang, 2013, Small, 9, 1397, 10.1002/smll.201202965

Fan, 2011, ACS Nano, 5, 191, 10.1021/nn102339t

Shen, 2014, Adv. Funct. Mater., 24, 4542, 10.1002/adfm.201400079

Li, 2007, Carbon, 45, 1686, 10.1016/j.carbon.2007.03.038

Rozada, 2013, Nano Res., 6, 216, 10.1007/s12274-013-0298-6

Kudin, 2008, Nano Lett., 8, 36, 10.1021/nl071822y

Tuinstra, 1970, J. Chem. Phys., 53, 1126, 10.1063/1.1674108

Ferrari, 2000, Phys. Rev. B: Condens. Matter, 61, 14095, 10.1103/PhysRevB.61.14095

Xin, 2015, Science, 349, 1083, 10.1126/science.aaa6502

Liu, 2014, Appl. Phys. A, 118, 885, 10.1007/s00339-014-8805-5

Mattevi, 2008, Adv. Funct. Mater., 185, 676

Zhu, 2015, Nat. Commun., 6, 6962, 10.1038/ncomms7962

Sun, 2013, Adv. Mater., 25, 2554, 10.1002/adma.201204576

Chen, 2011, Nanoscale, 3, 3132, 10.1039/c1nr10355e

K. Olympio , Presented at 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Hawaii, vol. 4, 2007

Wu, 2015, Nat. Commun., 6, 6141, 10.1038/ncomms7141

Hyun, 2014, Angew. Chem., Int. Ed., 53, 3780, 10.1002/anie.201305201

Ji, 2014, Energy Environ. Sci., 7, 1185, 10.1039/C3EE42573H

Ye, 2015, J. Mater. Chem. A, 3, 4018, 10.1039/C4TA05448B

Yang, 2016, J. Mater. Chem. A, 4, 9625, 10.1039/C6TA03733J

Renteria, 2015, Adv. Funct. Mater., 25, 4664, 10.1002/adfm.201501429

Zhang, 2005, Energy Convers. Manage., 47, 303, 10.1016/j.enconman.2005.03.004

Yavari, 2011, J. Phys. Chem. C, 115, 8753, 10.1021/jp200838s

Kim, 2009, Sol. Energy Mater. Sol. Cells, 93, 136, 10.1016/j.solmat.2008.09.010