Air-breathing Mg-Cu/CuO fuel cell
Tóm tắt
Magnesium fuel cells deliver higher electrical power output than lithium-ion batteries and have the potential to become an economically attractive alternative power source for domestic purposes. In place of noble metals in the air cathode of Mg fuel cells, we investigate the use of an integrated structure of a catalyst and current collector composed of a Cu/CuO hetero-structure. For a single cell, comprising of electrodes of dimension 3 cm × 1.5 cm with aqueous NaCl as the electrolyte, the Mg- Cu/CuO-based fuel cell shows an open-circuit voltage of 0.7 V and discharge current drain rate of 0.45 mA/s. A power density of 8.75 µWcm−2 is obtained with a CuO-based cathode when 1 M NaCl electrolyte is used. Relative to the magnesium-carbon-based fuel cell, the Mg-Cu/CuO fuel cell shows improved stability of the anode and cathode materials and extended operational time.
Từ khóa
Tài liệu tham khảo
Wei C, Tan L, Zhang Y, Xi B, Xiong S, Feng J, Qian Y (2022) Energy Storage Materials 48:447–457
Wei C, Tan L, Zhang Y, Wang Z, Feng J, Qian Y (2022) Energy Storage Materials 52:299–319
Yasuaki Kohama, Michiru Sakamoto, Toshihiko Abe (2015) US Patent No. US9461305B2
Medeiros MG, Bessette RR, Dischert D, Cichon J (2001) US Navy Patent No. 6228527
Bella F, De Luca S, Fagiolari L, Versaci D, Amici J (2021) Carlotta Francia and Silvia Bodoardo. Nanomaterials 11(3):810. https://doi.org/10.3390/nano11030810
Zhang J, Guan X, Lv R, Wang D, Liu P, Luo J (2020) Energy Storage Materials 26:408–413
Naga Mahesh K, Balaji R, Dhathathreyan KS (2015) Ionics 21:2603–2607. https://doi.org/10.1007/s11581-015-1434-y
Bella F, De Luca S, Fagiolari L, Versaci D, Amici J, Francia C, Bodoardo S (2021) Nanomaterials (Basel) 11(3):810
Zhang Y, Geng H, Wei W, Ma J, Chen L, Li CC (2019) Energy Storage Materials 20:118–138
Li D, Yuan Y, Liu J, Fichtner M, Pan F (2020) Journal of Magnesium and Alloys 8(4):963–979
Zhang T, Tao Z, Chen J (2014) Mater Horiz 1:196–206
Perez J, Gonzalez ER, Ticianelli EA (1998) Electrochim Acta 44:1329–1339
Lima FHB, Salgado JRC, Gonzalez ER, Ticianelli EA (2007) J Electrochem Soc 154:A369–A375
D. Wang, Y. Yu, H. L. Xin, R. Hovden, P. Ercius, J. A. Mundy, H. Chen, J. H. Richard, D. A. Muller, F. J. DiSalvo and H. D. Abruna, ˜ Nano Lett., 2012, 12, 5230–5238.
Wang D, Xin HL, Hovden R, Wang H, Yu Y, Muller DA, DiSalvo FJ, Abruna HD (2013) ˜ Nat. Mater 12:81–87
H. Chen, D. Wang, Y. Yu, K. A. Newton, D. A. Muller, H. Abruna and F. J. DiSalvo, ˜ J. Am. Chem. Soc., 2012, 134, 18453–18459.
Lima FHB, Ticianelli EA (2004) Electrochim Acta 49:4091–4099
Oezaslan M, Hasche F, Strasser P (2012) J Electrochem Soc 159:B444–B454
Jiang LH, Hsu A, Chu D, Chen RR (2009) J Electroanal Chem 629:87–93
Yang YF, Zhou YH, Cha CS (1995) Electrochim Acta 40:2579–2586
Jiang L, Hsu A, Chu D, Chen R (2010) Electrochim Acta 55:4506–4511
Schmidt TJ, Stamenkovic V, Arenz M, Markovic NM, Ross PN (2002) Electrochim Acta 47:3765–3776
Yang DS, Bhattacharjya D, Inamdar S, Park J, Yu JS (2012) J Am Chem Soc 134:16127–16130
Yang W, Fellinger TP, Antonietti M (2011) J Am Chem Soc 133:206–209
Wang H, Maiyalagan T, Wang X (2012) ACS Catal 2:781–794
Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760–764
Geng DS, Chen Y, Chen YG, Li YL, Li RY, Sun XL, Ye SY, Knights S (2011) Energy Environ Sci 4:760–764
Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS (2012) Energy Environ Sci 5:7936–7942
Cheng FY, Su Y, Liang J, Tao ZL, Chen J (2010) Chem Mater 22:898–905
Gorlin Y, Jaramillo TF (2010) J Am Chem Soc 132:13612–13614
Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Horn YS (2011) Nat Chem 3:546–550
Wu ZS, Yang SB, Sun Y, Parvez K, Feng XL, Mullen K (2012) J Am Chem Soc 134:9082–9085
Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai HJ (2011) Nat Mater 10:780–786
Liang Y, Wang H, Zhou J, Li Y, Wang J, Regier T, Dai H (2012) J Am Chem Soc 134:3517–3523
Liu RL, von Malotki C, Arnold L, Koshino N, Higashimura H, Baumgarten M, Mullen K (2011) J Am Chem Soc 133:10372–10375
Guo JS, Li HX, He H, Chu D, Chen RR (2011) J Phys Chem C 115:8494–8502
R Jayakrishnan, Akhil M Anand and Varun G Nair, Materials Research express 6,1250d9 (2020)
Qiu T, Yang J-G, Bai X-J, Wang Y-L (2019) RSC Adv 9:12737–12746
I. Came´an, P. Lavela, J. L. Tirado and A. B. Garc´ıa, Fuel, 2010, 89, 986–991.
Scherrer P (1918) Math-Phys KI 2:98
Manoj B, Kunjomana AG (2012) Int J Electrochem Sci 7:3127–3134
Rizzarelli P, Rapisarda M, Perna S, Mirabella EF, La Carta S (2016) PuglisiC, Determination of polyethylene in bio-degradable polymer blends and in compostable carrier bags by Py-GC/MS and TGA. J Anal Appl Pyrolysis 117:72–81
Li T, Ichimura M (2021) Fabrication of Transparent Mg(OH)2 Thin Films by Drop-Dry Deposition. Materials 14(4):724
Guha S (1991) Dale Peebles and J Terence Wieting. Bull Mater Sci 14(3):539–543
Li Y, Xiong D, Liu Y, Liu M, Liu J, Liang C, Li C, Jun Xu (2019) Nanotechnol Rev 8(1):493–502. https://doi.org/10.1515/ntrev-2019-0044