Air-breathing Mg-Cu/CuO fuel cell

R. Jayakrishnan1, Aruna Raj1, Akhil M. Anand1, P C Harikrishnan1, Athira Ayyappan1
1Modular Thin Film Fab Lab, Department of Physics, University of Kerala, Thiruvananthapuram, India

Tóm tắt

Magnesium fuel cells deliver higher electrical power output than lithium-ion batteries and have the potential to become an economically attractive alternative power source for domestic purposes. In place of noble metals in the air cathode of Mg fuel cells, we investigate the use of an integrated structure of a catalyst and current collector composed of a Cu/CuO hetero-structure. For a single cell, comprising of electrodes of dimension 3 cm × 1.5 cm with aqueous NaCl as the electrolyte, the Mg- Cu/CuO-based fuel cell shows an open-circuit voltage of 0.7 V and discharge current drain rate of 0.45 mA/s. A power density of 8.75 µWcm−2 is obtained with a CuO-based cathode when 1 M NaCl electrolyte is used. Relative to the magnesium-carbon-based fuel cell, the Mg-Cu/CuO fuel cell shows improved stability of the anode and cathode materials and extended operational time.

Từ khóa


Tài liệu tham khảo

Wei C, Tan L, Zhang Y, Xi B, Xiong S, Feng J, Qian Y (2022) Energy Storage Materials 48:447–457 Wei C, Tan L, Zhang Y, Wang Z, Feng J, Qian Y (2022) Energy Storage Materials 52:299–319 Yasuaki Kohama, Michiru Sakamoto, Toshihiko Abe (2015) US Patent No. US9461305B2 Medeiros MG, Bessette RR, Dischert D, Cichon J (2001) US Navy Patent No. 6228527 Bella F, De Luca S, Fagiolari L, Versaci D, Amici J (2021) Carlotta Francia and Silvia Bodoardo. Nanomaterials 11(3):810. https://doi.org/10.3390/nano11030810 Zhang J, Guan X, Lv R, Wang D, Liu P, Luo J (2020) Energy Storage Materials 26:408–413 Naga Mahesh K, Balaji R, Dhathathreyan KS (2015) Ionics 21:2603–2607. https://doi.org/10.1007/s11581-015-1434-y Bella F, De Luca S, Fagiolari L, Versaci D, Amici J, Francia C, Bodoardo S (2021) Nanomaterials (Basel) 11(3):810 Zhang Y, Geng H, Wei W, Ma J, Chen L, Li CC (2019) Energy Storage Materials 20:118–138 Li D, Yuan Y, Liu J, Fichtner M, Pan F (2020) Journal of Magnesium and Alloys 8(4):963–979 Zhang T, Tao Z, Chen J (2014) Mater Horiz 1:196–206 Perez J, Gonzalez ER, Ticianelli EA (1998) Electrochim Acta 44:1329–1339 Lima FHB, Salgado JRC, Gonzalez ER, Ticianelli EA (2007) J Electrochem Soc 154:A369–A375 D. Wang, Y. Yu, H. L. Xin, R. Hovden, P. Ercius, J. A. Mundy, H. Chen, J. H. Richard, D. A. Muller, F. J. DiSalvo and H. D. Abruna, ˜ Nano Lett., 2012, 12, 5230–5238. Wang D, Xin HL, Hovden R, Wang H, Yu Y, Muller DA, DiSalvo FJ, Abruna HD (2013) ˜ Nat. Mater 12:81–87 H. Chen, D. Wang, Y. Yu, K. A. Newton, D. A. Muller, H. Abruna and F. J. DiSalvo, ˜ J. Am. Chem. Soc., 2012, 134, 18453–18459. Lima FHB, Ticianelli EA (2004) Electrochim Acta 49:4091–4099 Oezaslan M, Hasche F, Strasser P (2012) J Electrochem Soc 159:B444–B454 Jiang LH, Hsu A, Chu D, Chen RR (2009) J Electroanal Chem 629:87–93 Yang YF, Zhou YH, Cha CS (1995) Electrochim Acta 40:2579–2586 Jiang L, Hsu A, Chu D, Chen R (2010) Electrochim Acta 55:4506–4511 Schmidt TJ, Stamenkovic V, Arenz M, Markovic NM, Ross PN (2002) Electrochim Acta 47:3765–3776 Yang DS, Bhattacharjya D, Inamdar S, Park J, Yu JS (2012) J Am Chem Soc 134:16127–16130 Yang W, Fellinger TP, Antonietti M (2011) J Am Chem Soc 133:206–209 Wang H, Maiyalagan T, Wang X (2012) ACS Catal 2:781–794 Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760–764 Geng DS, Chen Y, Chen YG, Li YL, Li RY, Sun XL, Ye SY, Knights S (2011) Energy Environ Sci 4:760–764 Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS (2012) Energy Environ Sci 5:7936–7942 Cheng FY, Su Y, Liang J, Tao ZL, Chen J (2010) Chem Mater 22:898–905 Gorlin Y, Jaramillo TF (2010) J Am Chem Soc 132:13612–13614 Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Horn YS (2011) Nat Chem 3:546–550 Wu ZS, Yang SB, Sun Y, Parvez K, Feng XL, Mullen K (2012) J Am Chem Soc 134:9082–9085 Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai HJ (2011) Nat Mater 10:780–786 Liang Y, Wang H, Zhou J, Li Y, Wang J, Regier T, Dai H (2012) J Am Chem Soc 134:3517–3523 Liu RL, von Malotki C, Arnold L, Koshino N, Higashimura H, Baumgarten M, Mullen K (2011) J Am Chem Soc 133:10372–10375 Guo JS, Li HX, He H, Chu D, Chen RR (2011) J Phys Chem C 115:8494–8502 R Jayakrishnan, Akhil M Anand and Varun G Nair, Materials Research express 6,1250d9 (2020) Qiu T, Yang J-G, Bai X-J, Wang Y-L (2019) RSC Adv 9:12737–12746 I. Came´an, P. Lavela, J. L. Tirado and A. B. Garc´ıa, Fuel, 2010, 89, 986–991. Scherrer P (1918) Math-Phys KI 2:98 Manoj B, Kunjomana AG (2012) Int J Electrochem Sci 7:3127–3134 Rizzarelli P, Rapisarda M, Perna S, Mirabella EF, La Carta S (2016) PuglisiC, Determination of polyethylene in bio-degradable polymer blends and in compostable carrier bags by Py-GC/MS and TGA. J Anal Appl Pyrolysis 117:72–81 Li T, Ichimura M (2021) Fabrication of Transparent Mg(OH)2 Thin Films by Drop-Dry Deposition. Materials 14(4):724 Guha S (1991) Dale Peebles and J Terence Wieting. Bull Mater Sci 14(3):539–543 Li Y, Xiong D, Liu Y, Liu M, Liu J, Liang C, Li C, Jun Xu (2019) Nanotechnol Rev 8(1):493–502. https://doi.org/10.1515/ntrev-2019-0044