Agronomic Biofortification with Se, Zn, and Fe: An Effective Strategy to Enhance Crop Nutritional Quality and Stress Defense—A Review

Justyna Szerement1, Alicja Szatanik-Kloc2, Jakub Mokrzycki1, Monika Mierzwa–Hersztek3
1Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
2Department of Physical Chemistry of Porous Materials, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
3Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Mickiewicza 21, 31-120, Krakow, Poland

Tóm tắt

Abstract

Human micronutrient deficiencies are a widespread problem worldwide and mainly concern people whose diet (mainly of plant origin) consists of insufficient amounts of critical vitamins and minerals. Low levels of micronutrients in plants are linked to, i.e., their decreasing concentration in soils and/or low bioavailability and presence of abiotic stresses which disturb the proper growth and development of plants. Agronomic biofortification of crops is a very promising way to improve the concentration of micronutrients in edible parts of crops without compromising yield and is recognized as the cheapest strategy to alleviate hidden hunger worldwide. The review is focused on the factors influencing the effectiveness of biofortified crops (a type of application, form, and a dose of applied microelement, biofertilizers, and nanofertilizers). Also, the accumulation of zinc, selenium, and iron in edible parts of crops, their effects on metabolism, morphological and yield parameters, and an impact on plants’ defense mechanisms against abiotic stress like salt, high/low temperature, heavy metal, and drought was discussed. Finally, the directions of future agronomic biofortification studies are proposed.

Từ khóa


Tài liệu tham khảo

Abaid-Ullah M, Hassan MN, Jamil M, Brader G, Shah MKN, Sessitsch A, Hafeez FY (2015) Plant growth promoting rhizobacteria: an alternate way to improve yield and quality of wheat (Triticum aestivum). Int J Agric Biol 17:51–60

Acqua SD, Ertani A, Pilon-Smits EAH, Fabrega-Prats M, Schiavon M (2019) Selenium biofortification differentially affects sulfur two rocket species (Eruca Sativa Mill. and Diplotaxis Tenuifolia) Grown in Hydroponics. Plants 8:68. https://doi.org/10.3390/plants8030068

Adrees M, Khan ZS, Hafeez M, Rizwan M, Hussain K, Asrar M, Alyemeni MN, Wijaya L, Ali S (2021) Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficient stress. Ecotoxicol Environ Saf 208:111627. https://doi.org/10.1016/j.ecoenv.2020.111627

de Almeida H, Carmona VMV, Inocêncio MF, Furtini Neto AE, Cecílio Filho AB, Mauad M (2020) Soil type and zinc doses in agronomic biofortification of lettuce genotypes. Agronomy 10:124. https://doi.org/10.3390/agronomy10010124

Amira SS, Souad AEl-feky, Essam D, (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic for 7:36–47. https://doi.org/10.5897/JHF2014.0379

Asif M, Nawaz H, Adnan M, Tabassum N, Kanwal N, Rashid N, Saleem M, Ahmad M (2017) Evaluation of the effects of Zinc on the chemical composition and biological activity of basil essential oil by using Raman spectroscopy. Ind Crop Prod 96:91–101. https://doi.org/10.1016/j.indcrop.2016.10.058

Athar T, Khan MK, Pandey A, Yilmaz FG, Hamurcu M, Hakki EE, Gezgin S (2020) Biofortification and the involved modern approaches. J Elem 25:717–731. https://doi.org/10.5601/jelem.2020.25.1.1911

Bachiega P, Salgado JM, De Carvalho JE, Ruiz ALTG, Schwarz K, Tezotto T, Morzelle MC (2016) Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chem 190:771–776. https://doi.org/10.1016/j.foodchem.2015.06.024

Barátová S, Mezeyova I, Hegedusová A, Andrejiová A (2015) Impact of biofortification, variety and cutting on chosen qualitative characteristic of basil (Ocimum basilicum L.). Acta Fytotech Zootech 18:71–75. https://doi.org/10.15414/afz.2015.18.03.71-75

Bastani S, Hajiboland R, Khatamian M, Saket-Oskoui M (2018) Nano iron (Fe) complex is an effective source of fe for tobacco plants grown under low Fe supply. J Soil Sci Plant Nutr 18:524–541. https://doi.org/10.4067/S0718-95162018005001602

Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58. https://doi.org/10.1016/j.gfs.2017.01.009

Cecílio Filho AB, Mendoza Cortez JW, de Sordi D, Urrestarazu M (2015) Common chicory performance as influenced by iron concentration in the nutrient solution. J Plant Nutr 38:1489–1494. https://doi.org/10.1080/01904167.2014.983609

Deng X, Liu K, Li M, Zhang W, Zhao X, Zhao Z, Liu X (2017) Difference of selenium uptake and distribution in the plant and selenium form in the grains of rice with foliar spray of selenite or selenate at different stages. F Crop Res 211:165–171. https://doi.org/10.1016/j.fcr.2017.06.008

Deshpande P, Dapkekar A, Oak MD, Paknikar KM, Rajwade JM (2017) Zinc complexed chitosan/TPP nanoparticles: a promising micronutrient nanocarrier suited for foliar application. Carbohydr Polym 165:394–401. https://doi.org/10.1016/j.carbpol.2017.02.061

Djanaguiraman M, Belliraj N, Bossmann SH, Prasad PVV (2018) High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega 3:2479–2491. https://doi.org/10.1021/acsomega.7b01934

Du W, Yang J, Peng Q, Liang X, Mao H (2019) Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: from toxicity and zinc biofortification. Chemosphere 227:109–116. https://doi.org/10.1016/j.chemosphere.2019.03.168

Ebrahimi N, Stoddard FL, Hartikainen H, Seppänen MM (2019) Plant species and growing season weather influence the efficiency of selenium biofortification. Nutr Cycl Agroecosystems 114:111–124. https://doi.org/10.1007/s10705-019-09994-z

Edelstein M, Berstein D, Shenker M, Azaizeh H, Ben-Hur M (2016) Effects of selenium on growth parameters of tomato and basil under fertigation management. HortScience 51:1050–1056. https://doi.org/10.21273/HORTSCI.51.8.1050

Elanchezhian R, Kumar D, Ramesh K, Biswas AK, Guhey A, Patra AK (2017) Morpho-physiological and biochemical response of maize (Zea mays L.) plants fertilized with nano-iron (Fe3O4) micronutrient. J Plant Nutr 40:1969–1977. https://doi.org/10.1080/01904167.2016.1270320

El-ramady H, Abdalla N, Elbasiouny H, Elbehiry F, Elsakhawy T (2021) Nano-biofortification of different crops to immune against COVID-19: A review. Ecotoxicol Environ Saf 222:12500. https://doi.org/10.1016/j.ecoenv.2021.112500

Elsheery NI, Sunoj VSJ, Wen Y, Zhu JJ, Muralidharan G, Cao KF (2020) Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. Plant Physiol Biochem 149:50–60. https://doi.org/10.1016/j.plaphy.2020.01.035

Farooq M, Ullah A, Usman M, Siddique KHM (2020) Application of zinc and biochar help to mitigate cadmium stress in bread wheat raised from seeds with high intrinsic zinc. Chemosphere 260:127652. https://doi.org/10.1016/j.chemosphere.2020.127652

Galinha C, Sánchez-Martínez M, Pacheco AMG, do Freitas MC, Coutinho J, Maçãs B, Almeida AS, Pérez-Corona MT, Madrid Y, Wolterbeek HT (2014) Characterization of selenium-enriched wheat by agronomic biofortification. J Food Sci Technol 52:4236–4245. https://doi.org/10.1007/s13197-014-1503-7

Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Arora P (2018) Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the. World Front Nutr 5:12. https://doi.org/10.3389/fnut.2018.00012

Giordano M, El-Nakhel C, Pannico A, Kyriacou MC, Stazi SR, De Pascale S, Rouphael Y (2019) Iron biofortification of red and green pigmented lettuce in closed soilless cultivation impacts crop performance and modulates mineral and bioactive composition. Agronomy 9:290. https://doi.org/10.3390/agronomy9060290

Di Gioia F, Petropoulos SA, Ozores-Hampton M, Morgan K, Rosskopf EN (2019) Zinc and iron agronomic biofortification of Brassicaceae microgreens. Agronomy 9:677. https://doi.org/10.3390/agronomy9110677

Golubkina N, Gomez LD, Kekina H et al (2020) Joint selenium–iodine supply and arbuscular mycorrhizal fungi inoculation affect yield and quality of chickpea seeds and residual biomass. Plants 9:804. https://doi.org/10.3390/plants9070804

Golubkina N, Zamana S, Seredin T, Poluboyarinov P, Sokolov S, Baranova H, Krivenkov L, Pietrantonio L, Caruso G (2019) Effect of selenium biofortification and beneficial microorganism inoculation on yield, quality and antioxidant properties of shallot bulbs. Plants 8:102. https://doi.org/10.3390/plants8040102

Gomez-Coronado F, Poblaciones MJ, Almeida AS, Cakmak I (2016) Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application. Plant Soil 401:331–346. https://doi.org/10.1007/s11104-015-2758-0

Gonzalez D, Almendros P, Obrador A, Alvarez JM (2019) Zinc application in conjunction with urea as a fertilization strategy for improving both nitrogen use efficiency and the zinc biofortification of barley. J Sci Food Agric 99:4445–4451. https://doi.org/10.1002/jsfa.9681

Gudkov SV, Shafeev GA, Glinushkin AP et al (2020) Production and use of selenium nanoparticles as fertilizers. ACS Omega 5:17767–17774. https://doi.org/10.1021/acsomega.0c02448

Haider MU, Farooq M, Nawaz A, Hussain M (2018a) Foliage applied zinc ensures better growth, yield and grain biofortification of mungbean. Int J Agric Biol 20:2817–2822. https://doi.org/10.17957/IJAB/15.0840

Haider MU, Hussain M, Farooq M, Nawaz A (2018b) Soil application of zinc improves the growth, yield and grain zinc biofortification of mungbean. Soil Environ 37:123–128. https://doi.org/10.25252/SE/18/71610

Hawrylak-Nowak B, Matraszek R, Pogorzelec M (2015) The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiol Plant 37:41. https://doi.org/10.1007/s11738-015-1788-9

Huang C, Qin N, Sun L, Yu M, Hu W, Qi Z (2018) Selenium improves physiological parameters and alleviates oxidative stress in strawberry seedlings under low-temperature stress. Int J Mol Sci 19:1913. https://doi.org/10.3390/ijms19071913

Huang S, Wang P, Yamaji N, Ma JF (2020) Plant nutrition for human nutrition: hints from rice research and future perspectives. Mol Plant 13:825–835. https://doi.org/10.1016/j.molp.2020.05.007

Hussain A, Ali S, Rizwan M, Rehman MZ, ur, Qayyum MF, Wang H, Rinklebe J, (2019) Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicol Environ Saf 173:156–164. https://doi.org/10.1016/j.ecoenv.2019.01.118

Hussein HAA, Darwesh OM, Mekki BB, El-Hallouty SM (2019) Evaluation of cytotoxicity, biochemical profile and yield components of groundnut plants treated with nano-selenium. Biotechnol Reports 24:e00377. https://doi.org/10.1016/j.btre.2019.e00377

Izydorczyk G, Ligas B, Mikula K, Witek-Krowiak A, Moustakas K, Chojnacka K (2021) Biofortification of edible plants with selenium and iodine – a systematic literature review. Sci Total Environ 754:141983. https://doi.org/10.1016/j.scitotenv.2020.141983

Jalal A, Shah S, Filho CMT, M, Khan A, Shah T, Ilyas M, Leonel Rosa PA, (2020) Agro-biofortification of zinc and iron in wheat grains. Gesunde Pflanz 72:227–236. https://doi.org/10.1007/s10343-020-00505-7

Jiang P, Liu J, Chen M, Yu G, You S, Li J (2020) Exogenous selenium improves the physiological resistance of cucumber to cadmium stress. Toxicol Environ Chem 102:455–472. https://doi.org/10.1080/02772248.2020.1798449

Jones GD, Droz B, Greve P, Gottschalk P, Poffet D, McGrath SP, Seneviratne SI, Smith P, Winkel LHE (2017) Selenium deficiency risk predicted to increase under future climate change. Proc Natl Acad Sci USA 114:2848–2853. https://doi.org/10.1073/pnas.1611576114

Karimi R, Ghabooli M, Rahimi J, Amerian M (2020) Effects of foliar selenium application on some physiological and phytochemical parameters of Vitis vinifera L. cv. Sultana under salt stress. J Plant Nutr 182:2226–2242. https://doi.org/10.1080/01904167.2020.1766072

Lara TS, de Lessa JH, L, de Souza KRD, Corguinha APB, Martins FAD, Lopes G, Guilherme LRG, (2019) Selenium biofortification of wheat grain via foliar application and its effect on plant metabolism. J Food Compos Anal 81:10–18. https://doi.org/10.1016/j.jfca.2019.05.002

Leija-Martínez P, Benavides-Mendoza A, Cabrera-De La Fuente M, Robledo-Olivo A, Ortega-Ortíz H, Sandoval-Rangel A, González-Morales S (2018) Lettuce biofortification with selenium in chitosan-polyacrylic acid complexes. Agronomy 8:275. https://doi.org/10.3390/agronomy8120275

Li D, Zhou C, Zhang J, An Q, Wu Y, Li JQ, Pan C (2020a) Nanoselenium foliar applications enhance the nutrient quality of pepper by activating the capsaicinoid synthetic pathway. J Agric Food Chem 68:9888–9895. https://doi.org/10.1021/acs.jafc.0c03044

Li J, Hu J, Ma C, Wang Y, Wu C, Huang J, Xing B (2016) Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 159:326–334. https://doi.org/10.1016/j.chemosphere.2016.05.083

Li X, Wu Y, Li B, Yang Y, Yang Y (2018) Selenium accumulation characteristics and biofortification potentiality in turnip (Brassica rapa var. rapa) supplied with selenite or selenate. Front Plant Sci 8:2207. https://doi.org/10.3389/fpls.2017.02207

Li Y, Zhu N, Liang X, Zheng L, Zhang C, Li YF, Zhang Z, Gao Y, Zhao J (2020b) A comparative study on the accumulation, translocation and transformation of selenite, selenate, and SeNPs in a hydroponic-plant system. Ecotoxicol Environ Saf 189:109955. https://doi.org/10.1016/j.ecoenv.2019.109955

Liu D, Liu Y, Zhang W, Chen X, Zou C (2017) Agronomic approach of zinc biofortification can increase zinc bioavailability in wheat flour and thereby reduce zinc deficiency in humans. Nutrients 9:465. https://doi.org/10.3390/nu9050465

Liu DY, Liu YM, Zhang W, Chen XP, Zou CQ (2019) Zinc uptake, translocation, and remobilization in winter wheat as affected by soil application of Zn fertilizer. Front Plant Sci 10:426. https://doi.org/10.3389/fpls.2019.00426

Lingyun Y, Jian W, Chenggang W, Shan L, Shidong Z (2016) Effect of zinc enrichment on growth and nutritional quality in pea sprouts. J Food Nutr Res 4:100–107

Longchamp M, Castrec-Rouelle M, Biron P, Bariac T (2015) Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. Food Chem 182:128–135. https://doi.org/10.1016/j.foodchem.2015.02.137

de Mangueze AV, J, Pessoa MFG, Silva MJ, et al (2018) Simultaneous zinc and selenium biofortification in rice. Accumulation, localization and implications on the overall mineral content of the flour. J Cereal Sci 82:34–41. https://doi.org/10.1016/j.jcs.2018.05.005

Manojlović MS, Lončarić Z, Cabilovski RR, Popović B, Karalić K, Ivezić V, Ademi A, Singh BR (2019) Biofortification of wheat cultivars with selenium. Acta Agric Scand Sect B Soil Plant Sci 69:715–724. https://doi.org/10.1080/09064710.2019.1645204

Márquez-Quiroz C, De-La-cruz-Lázaro E, Osorio-Osorio R, Sánchez-Chávez E (2015) Biofortification of cowpea beans with iron: iron’s influence on mineral content and yield. J Soil Sci Plant Nutr 15:839–847. https://doi.org/10.4067/S0718-95162015005000058

Mezeyova I, Hegedusova A (2016) Phytomass and content of essential oils in Ocimum basilicum after foliar treatment with selenium. Agric Food 4:19–27

Montoya M, Vallejo A, Recio J, Guardia G, Alvarez JM (2020) Zinc – nitrogen interaction effect on wheat biofortification and nutrient use efficiency. J Plant Nutr Soil Sci 183:169–179. https://doi.org/10.1002/jpln.201900339

Morales-Espinoza MC, Cadenas-pliego G, Marissa P, Delia A, Cabrera M, Fuente D (2019) Se nanoparticles induce changes in the growth, antioxidant responses, and fruit quality of tomato developed under NaCl stress. Molecules 24:3030. https://doi.org/10.3390/molecules24173030

Mumtaz MZ, Ahmad M, Jamil M, Asad SA, Hafeez F (2018) Bacillus strains as potential alternate for zinc biofortification of maize grains. Int J Agric Biol 20:1779–1786

Nawaz F, Ashraf MY, Ahmad R, Waraich EA, Shabbir RN, Hussain RA (2017) Selenium supply methods and time of application influence spring wheat (Triticum aestivum L.) yield under water deficit conditions. J Agric Sci 155:643–656. https://doi.org/10.1017/S0021859616000836

Newman RG, Moon Y, Sams CE, Tou JC, Waterland NL (2021) Biofortification of sodium selenate improves dietary mineral contents and antioxidant capacity of culinary herb microgreens. Front Plant Sci 12:716437. https://doi.org/10.3389/fpls.2021.716437

Niu H, Zhan K, Xu W, Peng C, Hou C, Li Y, Hou R, Wan X, Cai H (2020) Selenium treatment modulates fluoride distribution and mitigates fluoride stress in tea plant (Camellia sinensis (L.) O. Kuntze). Environ Pollut 267:115603. https://doi.org/10.1016/j.envpol.2020.115603

Niyigaba E, Twizerimana A, Mugenzi I, Ngnadong WA, Ye YP, Wu BM, Hai JB (2019) Winter wheat grain quality, zinc and iron concentration affected by a combined foliar spray of zinc and iron fertilizers. Agronomy 9:250. https://doi.org/10.3390/agronomy9050250

Noreen S, Sultan M, Akhter MS, Shah KH, Ummara U, Manzoor H, Ulfat M, Alyemeni MN, Ahmad P (2020) Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L.) grown under salt stress. Plant Physiol Biochem 158:244–254. https://doi.org/10.1016/j.plaphy.2020.11.007

Padash A, Shahabivand S, Behtash F, Aghaee A (2016) A practicable method for zinc enrichment in lettuce leaves by the endophyte fungus Piriformospora indica under increasing zinc supply. Sci Hortic 213:367–372. https://doi.org/10.1016/j.scienta.2016.10.040

Pal V, Singh G, Dhaliwal SS (2019) Agronomic biofortification of chickpea with zinc and iron through application of zinc and urea. Commun Soil Sci Plant Anal 50:1864–1877. https://doi.org/10.1080/00103624.2019.1648490

Park S, Grusak MA, Oh M (2015) Concentrations of minerals and phenolic compounds in three edible sprout species treated with iron-chelates during imbibition concentrations of minerals. Hort Environ Biotechnol 55:471–478. https://doi.org/10.1007/s13580-014-0075-9

Patel P, Trivedi G, Saraf M (2018) Iron biofortification in mungbean using siderophore producing plant growth promoting bacteria. Environ Sustain 1:357–365. https://doi.org/10.1007/s42398-018-00031-3

Persson DP, de Bang TC, Pedas PR, Kutman UB, Cakmak I, Andersen B, Finnie C, Schjoerring JK, Husted S (2016) Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. New Phytol 211:1255–1265. https://doi.org/10.1111/nph.13989

Praharaj S, Skalicky M, Maitra S, Bhadra P, Shankar T, Brestic M, Hejnak V, Vachova P, Hossain A (2021) Zinc biofortification in food crops could alleviate the zinc malnutrition in human health. Molecules 26:3509. https://doi.org/10.3390/molecules26123509

Prom-u-thai C, Rashid A, Ram H et al (2020) Simultaneous biofortification of rice with zinc, iodine, iron and selenium through foliar treatment of a micronutrient cocktail in five countries. Front Plant Sci 11:589835. https://doi.org/10.3389/fpls.2020.589835

Puccinelli M, Pezzarossa B, Pintimalli L, Malorgio F (2021a) Selenium biofortification of three wild species, Rumex cetosa L., Plantago coronopus L., and Portulaca oleracea L., grown as microgreens. Agronomy 11:1155. https://doi.org/10.3390/agronomy11061155

Puccinelli M, Landi M, Maggini R, Pardossi A, Incrocci L (2021b) Iodine biofortification of sweet basil and lettuce grown in two hydroponic systems. Sci Hortic 276:109783. https://doi.org/10.1016/j.scienta.2020.109783

Puccinelli M, Pezzarossa B, Rosellini I, Malorgio F (2020) Selenium enrichment enhances the quality and shelf life of basil leaves. Plants 9:801. https://doi.org/10.3390/plants9060801

Puccinelli M, Malorgio F, Maggini R, Rosellini I, Pezzarossa B (2019a) Biofortification of Ocimum basilicum L. plants with selenium. Acta Hortic 1242:663–670. https://doi.org/10.17660/ActaHortic.2019.1242.98

Puccinelli M, Malorgio F, Rosellini I, Pezzarossa B (2019b) Production of selenium-biofortified microgreens from selenium-enriched seeds of basil. J Sci Food Agric 99:5601–5605. https://doi.org/10.1002/jsfa.9826

Puccinelli M, Malorgio F, Rosellini I, Pezzarossa B (2017) Uptake and partitioning of selenium in basil (Ocimum basilicum L.) plants grown in hydroponics. Sci Hortic 225:271–276. https://doi.org/10.1016/j.scienta.2017.07.014

Ramzan Y, Hafeez MB, Khan S, Nadeem M, Saleem-ur-Rahman BS, Ahmad J (2020) Biofortification with zinc and iron improves the grain quality and yield of wheat crop. Int J Plant Prod 14:501–510. https://doi.org/10.1007/s42106-020-00100-w

Ramzani PMA, Khalid M, Naveed M, Ahmad R, Shahid M (2016) Iron biofortification of wheat grains through integrated use of organic and chemical fertilizers in pH affected calcareous soil. Plant Physiol Biochem 104:284–293. https://doi.org/10.1016/j.plaphy.2016.04.053

Rivera-Martin A, Broadley MR, Poblaciones MJ (2020) Soil and foliar zinc biofortification of broccolini: effects on plant growth and mineral accumulation. Crop Pasture Sci 71:484–490. https://doi.org/10.1071/CP19474

Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, Zia ur Rehman M, Waris AA, (2019) Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277. https://doi.org/10.1016/j.chemosphere.2018.09.120

Ros GH, van Rotterdam AMD, Bussink DW, Bindraban PS (2016) Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant Soil 404:99–112. https://doi.org/10.1007/s11104-016-2830-4

Sabatino L, Ntatsi G, Iapichino G, D’anna F, De Pasqual C (2019) Effect of selenium enrichment and type of application on yield, functional quality and mineral composition of curly endive grown in a hydroponic system. Agronomy 9:207. https://doi.org/10.3390/agronomy9040207

Sago Y, Watanabe N, Minami Y (2018) Zinc biofortification of hydroponic baby leaf lettuce grown under artificial lighting with elevated wind speed and root zone temperature. J Agric Meteorol 74:173–177. https://doi.org/10.2480/agrmet.D-17-00048

Sahab S, Suhani I, Srivastava V, Chauhan PS, Singh RP, Prasad V (2021) Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Sci Total Environ 764:144164. https://doi.org/10.1016/j.scitotenv.2020.144164

Sambo P, Nicoletto C, Giro A et al (2019) Hydroponic Solutions for soilless production systems: Issues and opportunities in a smart agriculture perspective. Front Plant Sci 10:923. https://doi.org/10.3389/fpls.2019.00923

Schiavon M, Berto C, Malagoli M, Trentin A, Sambo P, Dall’Acqua S, Pilon-Smits EAH, (2016) Selenium biofortification in radish enhances nutritional quality via accumulation of methyl-selenocysteine and promotion of transcripts and metabolites related to glucosinolates, phenolics amino acids. Front Plant Sci 7:1371. https://doi.org/10.3389/fpls.2016.01371

Shah WH, Rasool A, Tahir I, Rehman RU (2020) Exogenously applied selenium (Se) mitigates the impact of salt stress in Setaria italica L. and Panicum miliaceum L. Nucl 63:327–339. https://doi.org/10.1007/s13237-020-00326-z

Sharma S, Malhotra H, Borah P, Meena MK, Bindraban P, Chandra S, Pande V, Pandey R (2019) Foliar application of organic and inorganic iron formulation induces differential detoxification response to improve growth and biofortification in soybean. Plant Physiol Reports 24:119–128. https://doi.org/10.1007/s40502-018-0412-6

Sheikhalipour M, Esmaielpour B, Behnamian M, Gohari G, Giglou MT, Vachova P, Rastogi A, Brestic M, Skalicky M (2021) Chitosan–selenium nanoparticle (Cs–Se NP) foliar spray alleviates salt stress in bitter melon. Nanomaterials 11:684. https://doi.org/10.3390/nano11030684

Siddiqui SA, Blinov AV, Serov AV et al (2021) Effect of selenium nanoparticles on germination of Hordéum vulgáre barley seeds. Coatings 11:862. https://doi.org/10.3390/coatings11070862

da Silva DF, Cipriano PE, de Souza RR, Siueia M, Faquin V, de Souza Silva ML, Guilherme LRG (2020) Biofortification with selenium and implications in the absorption of macronutrients in Raphanus sativus L. J Food Compos Anal 86:103382. https://doi.org/10.1016/j.jfca.2019.103382

Skrypnik L, Novikova A, Tokupova E (2019) Improvement of phenolic compounds, essential oil content and antioxidant properties of sweet basil (Ocimum basilicum L.) depending on type and concentration of selenium application. Plants 8:458. https://doi.org/10.3390/plants8110458

Smažíková P, Praus L, Száková J, Tremlová J, Hanč A, Tlustoš P (2019) Effects of organic matter-rich amendments on selenium mobility in soils. Pedosphere 29:740–751. https://doi.org/10.1016/S1002-0160(17)60444-2

Smoleń S, Kowalska I, Kováčik P, Halka M, Sady W (2019) Biofortification of six varieties of lettuce (Lactuca sativa L.) with iodine and selenium in combination with the application of salicylic acid. Front Plant Sci 10:143. https://doi.org/10.3389/fpls.2019.00143

Subbaiah LV, Prasad TNVKV, Krishna TG, Sudhakar P, Reddy BR, Pradeep T (2016) Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). J Agric Food Chem 64:3778–3788. https://doi.org/10.1021/acs.jafc.6b00838

Tarafder C, Daizy M, Alam MM, Ali MR, Islam MJ, Islam R, Ahommed MS, Aly Saad Aly M, Khan MZH (2020) Formulation of a hybrid nanofertilizer for slow and sustainable release of micronutrients. ACS Omega 5:23960–23966. https://doi.org/10.1021/acsomega.0c03233

Tian M, Xu X, Liu Y, Xie L, Pan S (2016) Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars. Food Chem 190:374–380. https://doi.org/10.1016/j.foodchem.2015.05.098

Tran BTT, Cavagnaro TR, Watts-Williams SJ (2019) Arbuscular mycorrhizal fungal inoculation and soil zinc fertilisation affect the productivity and the bioavailability of zinc and iron in durum wheat. Mycorrhiza 29:445–457. https://doi.org/10.1007/s00572-019-00911-4

Triticum W, Abaid-ullah M, Hassan MN, Jamil M, Brader G, Kausar M (2015) Plant growth promoting rhizobacteria : an alternate way to improve yield and plant growth promoting rhizobacteria : an alternate way to improve yield and quality of wheat (Triticum aestivum). Int J Agric Biol 7:51–60

Turner ER, Luo Y, Buchanan RL (2020) Microgreen nutrition, food safety, and shelf life: a review. J Food Sci 85:870–882

Vicas SI, Cavalu S, Laslo V, Tocai M, Costea TO, Moldovan L (2019) Growth, photosynthetic pigments, phenolic, glucosinolates content and antioxidant capacity of broccoli sprouts in response to nanoselenium particles supply. Not Bot Horti Agrobot Cluj-Napoca 47:821–828. https://doi.org/10.15835/nbha47311490

Wang K, Wang Y, Li K, Wan Y, Wang Q, Zhuang Z, Guo Y, Li H (2020a) Uptake, translocation and biotransformation of selenium nanoparticles in rice seedlings (Oryza sativa L.). J Nanobiotechnology 18:103. https://doi.org/10.1186/s12951-020-00659-6

Wang M, Ali F, Wang M, Dinh QT, Zhou F, Bañuelos GS, Liang D (2020b) Understanding boosting selenium accumulation in wheat (Triticum aestivum L.) following foliar selenium application at different stages, forms, and doses. Environ Sci Pollut Res 27:717–728. https://doi.org/10.1007/s11356-019-06914-0

Yahyaoui A, Djebar MR, Khene L, Bouarroudj T, Kahli H, Bourayou C (2017) Assessment of exposure wheat Triticum aestivum L. To zinc oxide nanoparticles (ZnO): Evaluation of oxidative damage. Studia Univ VG, SSV 27:271–280

Yasin M, El-Mehdawi AF, Anwar A, Pilon-Smits EAH, Faisal M (2015a) Microbial-enhanced selenium and iron biofortification of wheat (Triticum aestivum L.) - Applications in Phytoremediation and Biofortification. Int J Phytoremediation 17:341–347. https://doi.org/10.1080/15226514.2014.922920

Yasin M, El-Mehdawi AF, Pilon-Smits EAH, Faisal M (2015b) Selenium-fortified wheat: potential of microbes for biofortification of selenium and other essential nutrients. Int J Phytoremediation 17:777–786. https://doi.org/10.1080/15226514.2014.987372

Yin H, Qi Z, Li M, Ahammed GJ, Chu X, Zhou J (2019) Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L. Ecotoxicol Environ Saf 169:911–917. https://doi.org/10.1016/j.ecoenv.2018.11.080

Zhang R, Zhang H, Tu C, Hu X, Li L, Luo Y, Christie P (2015) Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ Sci Pollut Res 22:11109–11117. https://doi.org/10.1007/s11356-015-4325-x