Agro-industrial-residues as potting media: physicochemical and biological characters and their influence on plant growth
Tóm tắt
Từ khóa
Tài liệu tham khảo
Restrepo AP, Medina E, Pérez-Espinosa A et al (2013) Substitution of peat in horticultural seedlings: Suitability of digestate-derived compost from cattle manure and maize silage codigestion. Commun Soil Sci Plant Anal 44:668–677. https://doi.org/10.1080/00103624.2013.748004
Unal M (2013) Effect of organic media on growth of vegetable seedlings. Pakistan J Agric Sci 50:517–522. https://www.researchgate.net/publication/279220515_effect_of_organic_media_on_growth_of_vegetable_seedlings. Accessed 29 Aug 2021
Chrysargyris A, Saridakis C, Tzortzakis N (2013) Use of municipal solid waste compost as growing medium component for melon seedlings production. J Plant Biol Soil Heal 2:1–5. https://doi.org/10.13188/2331-8996.1000005
Marinou E, Chrysargyris A, Tzortzakis N (2013) Use of sawdust, coco soil and pumice in hydroponically grown strawberry. Plant, Soil Environ 59:452–459. https://doi.org/10.17221/297/2013-pse
Singh SN, Yadav RL, Lal M et al (2011) Assessing feasibility of growing sugarcane by a polythene bag culture system for rapid multiplication of seed cane in sub-tropical climatic conditions of India. Plant Prod Sci 14:229–232. https://doi.org/10.1626/pps.14.229
Tsakaldimi M, Ganatsas P (2016) A synthesis of results on wastes as potting media substitutes for the production of native plant species. Reforesta. https://doi.org/10.21750/refor.1.08.8
Banach J, Małek S, Kormanek M, Durło G (2020) Growth of Fagus sylvatica L. and Picea abies L. karst. seedlings grown in hiko containers in the first year after planting. Sustainability 12:. https://doi.org/10.3390/su12177155
Barrera Necha LL, Bautista-Baños S (2016) Chapter 8 - prospects for the use of chitosan and other alternatives in ornamental conservation. In: Bautista-Baños S, Romanazzi G, Jiménez-Aparicio A (eds) Chitosan in the preservation of agricultural commodities. Academic Press, San Diego, pp 221–249. https://doi.org/10.1016/B978-0-12-802735-6.00008-2
Pascual JA, Ceglie F, Tuzel Y, et al (2018) Organic substrate for transplant production in organic nurseries. A review. Agron Sustain Dev 38:. https://doi.org/10.1007/s13593-018-0508-4
Bunt BR (1988) Media and mixes for container-grown plants, 1st ed. Springer Netherlands. https://doi.org/10.1007/978-94-011-7904-1
Fonteno WC (1993) Problems & considerations in determining physical properties of horticultural substrates. Acta Hortic. https://doi.org/10.17660/actahortic.1993.342.22
Caron J, Nkongolo VKN (1999) Aeration in growing media: recent developments. Acta Hortic. https://doi.org/10.17660/actahortic.1999.481.64
Raviv M, Wallach R, Silber A, et al (2002) Substrates and their analysis. Hydroponic Prod Veg Ornamentals 25–101. https://www.researchgate.net/publication/313419715_Substrates_and_their_analysis. Accessed 29 Aug 2021
Kitir N, Yildirim E, Şahin Ü, et al (2018) Peat use in horticulture. In: Peat. https://doi.org/10.5772/intechopen.79171
Wilkinson KM, Landis TD, Haase DL, et al (2014) Tropical nursery manual-a guide to starting and operating a nursery for native and traditional plants. Agric Handb 732 378. https://www.fs.fed.us/rm/pubs_series/wo/wo_ah732.pdf. Accessed 29 Aug 2021
Kern J, Tammeorg P, Shanskiy M et al (2017) Synergistic use of peat and charred material in growing media–an option to reduce the pressure on peatlands? J Environ Eng Landsc Manag 25:160–174. https://doi.org/10.3846/16486897.2017.1284665
Alexander PD, Bragg NC, Meade R, et al (2008) Peat in horticulture and conservation: the UK response to a changing world. Mires Peat 3:1–10. http://pixelrauschen.de/wbmp/media/map03/map_03_08.pdf. Accessed 29 Aug 2021
Kuisma E, Palonen P, Yli-Halla M (2014) Reed canary grass straw as a substrate in soilless cultivation of strawberry. Sci Hortic (Amsterdam) 178:217–223. https://doi.org/10.1016/j.scienta.2014.09.002
Schmilewski G (2009) Growing medium constituents used in the EU. Acta Hortic 819:33–46. https://doi.org/10.17660/ActaHortic.2009.819.3
IUCN (2017) Peatlands and climate change. In: Int. Union Conserv. Nat. - Issues Br. https://www.iucn.org/resources/issues-briefs/peatlands-and-climate-change. Accessed 9 Sep 2021
Parish, F. Sirin, A. Charman, D. Joosten, H. Minayeva, T. Silvius, M. and Stringer L (2008) Assessment on peatlands, biodiversity and climate change: main report. Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen. In: Assess. Peatlands, Biodivers. Clim. Chang. main report. http://www.imcg.net/modules/download_gallery/dlc.php?file=35&id=1311192068. Accessed 29 Aug 2021
Chrysargyris A, Stavrinides M, Moustakas K, Tzortzakis N (2019) Utilization of paper waste as growing media for potted ornamental plants. Clean Technol Environ Policy 21:1937–1948. https://doi.org/10.1007/s10098-018-1647-7
Joosten H, Clarke D (2002) Wise use of mires and peatlands-background and principles including a framework for decision-making. In: Int. Mire Conserv. Gr. Int. Peat Soc. http://www.imcg.net/media/download_gallery/books/wump_wise_use_of_mires_and_peatlands_book.pdf. Accessed 29 Aug 2021
Quantis (2012) Comparative life cycle assessment of horticultural growing media based on peat and other growing media constituents. European Peat and Growing Media Association156, https://www.warum-torf.info/download/comparative-life-cycle-assessment-of-horticultural-growing-media-based-on-peat-and-other-growing-media-constituents. Accessed 29 Aug 2021
Van Os EA (1999) Closed soilless growing systems: a sustainable solution for Dutch greenhouse horticulture. Water Sci Technol 39:105–112. https://doi.org/10.1016/S0273-1223(99)00091-8
Carlile B, Coules A (2013) Towards sustainability in growing media. Acta Hortic. https://doi.org/10.17660/actahortic.2013.1013.42
Bragg N, Brough W (2014) The development of responsibly sourced growing media components and mixes. Acta Hortic 1055:141–144. https://doi.org/10.17660/ActaHortic.2014.1055.30
Robertson RA (1993) Peat, horticulture and environment. Biodivers Conserv. https://doi.org/10.1007/BF00056747
Abad M, Noguera P, Burés S (2001) National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain. Bioresour Technol 77:197–200. https://doi.org/10.1016/S0960-8524(00)00152-8
Bilderback TE, Riley ED, Jackson BE, et al (2013) Strategies for developing sustainable substrates in nursery crop production. Acta Hortic 1013:43–56. https://doi.org/10.17660/ActaHortic.2013.1013.2
Savvas D, Gianquinto GP, Tüzel Y, Gruda N (2013) Good agricultural practices for greenhouse vegetable crops - principles for Mediterranean climate areas. In: FAO Plant Prod. Prot. Pap. 217. http://www.fao.org/3/i3284e/i3284e.pdf. Accessed 29 Aug 2021
Noguera P, Abad M, Puchades R et al (2003) Influence of particle size on physical and chemical properties of coconut coir dust as container medium. Commun Soil Sci Plant Anal 34:593–605. https://doi.org/10.1081/CSS-120017842
Benito M, Masaguer A, Moliner A, De Antonio R (2006) Chemical and physical properties of pruning waste compost and their seasonal variability. Bioresour Technol 97:2071–2076. https://doi.org/10.1016/j.biortech.2005.09.011
Urrestarazu M, Martínez GA, Salas MDC (2005) Almond shell waste: Possible local rockwool substitute in soilless crop culture. Sci Hortic (Amsterdam) 103:453–460. https://doi.org/10.1016/j.scienta.2004.06.011
Samadi A (2011) Effect of particle size distribution of perlite and organic media on cucumber in hydroponic system. Indian J Hortic 66:326–332. https://www.researchgate.net/publication/286187937_Effect_of_particle_size_distribution_of_perlite_and_its_mixture_with_organic_substrates_on_cucumber_in_hydroponics_system. Accessed 29 Aug 2021
Goh KM, Haynes RJ (1977) Evaluation of potting media for commercial nursery production of container grown plants: III. effects of media, fertiliser nitrogen, and a nitrification inhibitor on soil nitrification and nitrogen recovery of callistephus chinensis (l.) nees ‘pink prince. New Zeal J Agric Res 20:383–393. https://doi.org/10.1080/00288233.1977.10427350
Bunt AC (1974) Some physical and chemical characteristics of loamless pot-plant substrates and their relation to plant growth. Acta Hortic. https://doi.org/10.17660/actahortic.1974.37.6
Beardsell DV, Nichols DG, Jones DL (1979) Physical properties of nursery potting-mixtures. Sci Hortic (Amsterdam). https://doi.org/10.1016/0304-4238(79)90048-7
Jaenicke H (1999) Good tree nursery practices: practical guidelines for research nurseries. Nairobi. http://apps.worldagroforestry.org/downloads/Publications/PDFS/B14351.pdf. Accessed 29 Aug 2021
Wisdom B, Nyembezi M, Agathar K (2017) Effect of different vermiculite and pine bark media substrates mixtures on physical properties and spiral rooting of radish (Raphanus sativus L.) in float tray system. Rhizosphere 3:67–74. https://doi.org/10.1016/j.rhisph.2017.01.002
Aghdak P, Mobli M, Khoshgoftarmanesh AH (2016) Effects of different growing media on vegetative and reproductive growth of bell pepper. J Plant Nutr. https://doi.org/10.1080/01904167.2016.1143494
Jayasinghe GY, Arachchi IDL, Tokashiki Y (2010) Evaluation of containerized substrates developed from cattle manure compost and synthetic aggregates for ornamental plant production as a peat alternative. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2010.06.002
Graceson A, Hare M, Monaghan J, Hall N (2013) The water retention capabilities of growing media for green roofs. Ecol Eng 61:328–334. https://doi.org/10.1016/j.ecoleng.2013.09.030
Owen JS, Altland JE (2008) Container height and Douglas fir bark texture affect substrate physical properties. HortScience 43:505–508. https://doi.org/10.21273/hortsci.43.2.505
Nguyen VT, Wang CH (2017) Use of organic materials as growing media for honeydew melon seedlings in organic agriculture. Commun Soil Sci Plant Anal. https://doi.org/10.1080/00103624.2017.1407431
Kamaluddin M, Zwiazek JJ (2004) Effects of root medium pH on water transport in paper birch (Betula papyrifera) seedlings in relation to root temperature and abscisic acid treatments. Tree Physiol. https://doi.org/10.1093/treephys/24.10.1173
Yang M, Tan L, Xu Y et al (2015) Effect of low pH and aluminum toxicity on the photosynthetic characteristics of different fast-growing Eucalyptus vegetatively propagated clones. PLoS ONE. https://doi.org/10.1371/journal.pone.0130963
Ellsworth DS, Xuan L (1994) Photosynthesis and canopy nutrition of four sugar maple forests on acid soils in northern Vermont. Can J For Res. https://doi.org/10.1139/x94-272
St. Clair SB, Lynch JP, (2005) Differences in the success of sugar maple and red maple seedlings on acid soils are influenced by nutrient dynamics and light environment. Plant, Cell Environ. https://doi.org/10.1111/j.1365-3040.2005.01337.x
Maher M, Prasad M, Raviv M (2008) Organic soilless media components. In: Soilless Culture: Theory and Practice. https://doi.org/10.1016/B978-044452975-6.50013-7
Carlile WR, Cattivello C, Zaccheo P (2015) Organic growing media: constituents and properties. Vadose Zo J. https://doi.org/10.2136/vzj2014.09.0125
Brust GE (2019) Management strategies for organic vegetable fertility. In: Biswas D, Micallef SA (eds) Safety and Practice for Organic Food. Academic Press, pp 193–212. https://doi.org/10.1016/B978-0-12-812060-6.00009-X
Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596. https://doi.org/10.1128/AEM.02775-08
Visconti F, de Paz JM (2016) Electrical conductivity measurements in agriculture: the assessment of soil salinity. In: Cocco L (ed) New Trends and Developments in Metrology. IntechOpen, pp 99–126. https://doi.org/10.5772/62741
Ugochukwu UC (2019) Characteristics of clay minerals relevant to bioremediation of environmental contaminated systems. In: Mercurio M, Sarkar B, Langella A (eds) Modified clay and zeolite nanocomposite materials. Elsevier, pp 219–242. https://doi.org/10.1016/B978-0-12-814617-0.00006-2
Handreck K, Black N (2010) Growing media for ornamenatl plants and turf, 4th ed. NewSouth Publishing. pp 1–560
Lemaire F (1995) Physical, chemical and biological properties of growing medium. Acta Hortic. 273–284. https://doi.org/10.17660/ActaHortic.1995.396.33
Handreck KA (1993) Properties of coir dust, and its use in the formulation of soilless potting media. Commun Soil Sci Plant Anal 24:349–363. https://doi.org/10.1080/00103629309368804
Carlile WR, Wilson DP (1991) Microbial activity in growing media - a brief review. Acta Hortic. 197–206. https://doi.org/10.17660/actahortic.1991.294.21
Ghosh PK, Sarma US, Das RA et al (2007) A novel method for accelerated composting of coir pith. Energy Fuels 21:822–827. https://doi.org/10.1021/ef060513c
Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdú M (2012) The network structure of plant-arbuscular mycorrhizal fungi. New Phytol 194:536–547. https://doi.org/10.1111/j.1469-8137.2011.04045.x
Alexander A, Singh VK, Mishra A, Jha B (2019) Plant growth promoting rhizobacterium Stenotrophomonas maltophilia BJ01 augments endurance against N2 starvation by modulating physiology and biochemical activities of Arachis hypogea. PLoS ONE 14:1–20. https://doi.org/10.1371/journal.pone.0222405
Radhapriya P, Ramachandran A, Anandham R, Mahalingam S (2015) Pseudomonas aeruginosa RRALC3 enhances the biomass, nutrient and carbon contents of Pongamia pinnata seedlings in degraded forest soil. PLoS ONE 10:1–19. https://doi.org/10.1371/journal.pone.0139881
Hashem A, Tabassum B, Fathi Abd_Allah E (2019) Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26:1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004
Singh P, Sharma D (2019) Response of Trichoderma viride and plant growth promoting rhizobacteria (PGPR) on growth and yield of chilli cv. Arka Lohit J Pharmacogn Phytochem 8:1495–1497
Singh RP, Jha PN (2016) The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS ONE 11:1–24. https://doi.org/10.1371/journal.pone.0155026
Velázquez-Becerra C, Macías-Rodríguez LI, López-Bucio J et al (2011) A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant Soil 339:329–340. https://doi.org/10.1007/s11104-010-0583-z
Hewavitharana N, Kannangara S (2019) Evaluation of organic potting media enriched with Trichoderma spp. and their effect on growth performance of selected vegetables. ijsar.in 6:13–25
del Cappellari L, R, Santoro MV, Nievas F, et al (2013) Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Appl Soil Ecol. https://doi.org/10.1016/j.apsoil.2013.04.001
Jangir M, Sharma S, Sharma S (2019) Target and non-target effects of dual inoculation of biocontrol agents against Fusarium wilt in Solanum lycopersicum. Biol Control 138:. https://doi.org/10.1016/j.biocontrol.2019.104069
Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. https://doi.org/10.1007/s11274-011-0979-9
Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:. https://doi.org/10.1007/s11274-017-2364-9
Hoffman BM, Lukoyanov D, Yang Z-Y et al (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062. https://doi.org/10.1021/cr400641x
Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149. https://doi.org/10.1016/j.tibtech.2009.12.002
Raymond KN, Dertz EA (2004) Biochemical and physical properties of siderophores. In: Jorge H. Crosa, Alexandra R. Mey SMP (ed) Iron transport in bacteria. John Wiley & Sons, Ltd, pp 1–17. https://doi.org/10.1128/9781555816544.ch1
Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220. https://doi.org/10.1139/m96-032
Glick BR (2012) Plant Growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012:963401. https://doi.org/10.6064/2012/963401
Herrera W, Valbuena O, Pavone-Maniscalco D (2020) Formulation of Trichoderma asperellum TV190 for biological control of Rhizoctonia solani on corn seedlings. Egypt J Biol Pest Control 30:. https://doi.org/10.1186/s41938-020-00246-9
Martínez-Medina A, Roldán A, Pascual JA (2009) Performance of a Trichoderma harzianum bentonite-vermiculite formulation against Fusarium wilt in seedling nursery melon plants. HortScience 44:2025–2027. https://doi.org/10.21273/hortsci.44.7.2025
Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:1–7. https://doi.org/10.3389/fmicb.2014.00148
Grunert O, Hernandez-Sanabria E, Vilchez-Vargas R et al (2016) Mineral and organic growing media have distinct community structure, stability and functionality in soilless culture systems. Sci Rep 6:18837. https://doi.org/10.1038/srep18837
Koohakan P, Ikeda H, Jeanaksorn T et al (2004) Evaluation of the indigenous microorganisms in soilless culture: occurrence and quantitative characteristics in the different growing systems. Sci Hortic (Amsterdam) 101:179–188. https://doi.org/10.1016/j.scienta.2003.09.012
Van Gerrewey T, Vandecruys M, Ameloot N et al (2020) Microbe-plant growing media interactions modulate the effectiveness of bacterial amendments on lettuce performance inside a plant factory with artificial lighting. Agronomy 10:1456. https://doi.org/10.3390/agronomy10101456
Vandecasteele B, Muylle H, De Windt I et al (2018) Plant fibers for renewable growing media: Potential of defibration, acidification or inoculation with biocontrol fungi to reduce the N drawdown and plant pathogens. J Clean Prod 203:1143–1154. https://doi.org/10.1016/j.jclepro.2018.08.167
Debode J, De Tender C, Cremelie P et al (2018) Trichoderma-inoculated miscanthus straw can replace peat in strawberry cultivation, with beneficial effects on disease control. Front Plant Sci 9:1–15. https://doi.org/10.3389/fpls.2018.00213
Nerlich A, Dannehl D (2021) Soilless cultivation: dynamically changing chemical properties and physical conditions of organic substrates influence the plant phenotype of lettuce. Front Plant Sci 11:1–13. https://doi.org/10.3389/fpls.2020.601455
Moyano FE, Manzoni S, Chenu C (2013) Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol Biochem 59:72–85. https://doi.org/10.1016/j.soilbio.2013.01.002
Heiskanen J (1995) Physical properties of two-component growth media based on Sphagnum peat and their implications for plant-available water and aeration. Plant Soil 172:45–54. https://doi.org/10.1007/BF00020858
Andlar M, Rezić T, Marđetko N et al (2018) Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci 18:768–778. https://doi.org/10.1002/elsc.201800039
Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620. https://doi.org/10.1016/S0734-9750(97)00006-2
Takahashi M, Yamamoto R, Sakurai N et al (2015) Fungal hemicellulose-degrading enzymes cause physical property changes concomitant with solubilization of cell wall polysaccharides. Planta 241:359–370. https://doi.org/10.1007/s00425-014-2176-1
Janusz G, Pawlik A, Sulej J et al (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41:941–962. https://doi.org/10.1093/femsre/fux049
Carlile WR (2004) Changes in organic growing media during storage. Acta Hortic 648:153–159. https://doi.org/10.17660/ActaHortic.2004.648.18
Drobnik J, Stebel A (2017) Tangled history of the European uses of Sphagnum moss and sphagnol. J Ethnopharmacol 209:41–49. https://doi.org/10.1016/j.jep.2017.07.025
Tahvonen R, Kemppainen R (2008) Microbiological variation in self-heated and non-self-heated sphagnum peat and its effect on growth of plants. Acta Hortic 779:75–78. https://doi.org/10.17660/ActaHortic.2008.779.6
Wever G, Hertogh-Pon MH (1993) Effects of self-heating on biological, chemical and physical characteristics of peat. Acta Hortic. https://doi.org/10.17660/actahortic.1993.342.2
Verhagen JBGM, Boon HTM (2008) Classification of growing media on their environmental profile. Acta Hortic 779:231–238. https://doi.org/10.17660/ActaHortic.2008.779.28
Barrett GE, Alexander PD, Robinson JS, Bragg NC (2016) Achieving environmentally sustainable growing media for soilless plant cultivation systems – a review. Sci Hortic (Amsterdam) 212:220–234. https://doi.org/10.1016/j.scienta.2016.09.030
Orru M, Orru H (2008) Sustainable use of Estonian peat reserves and environmental challenges. Est J Earth Sci 57:87–93. https://doi.org/10.3176/earth.2008.2.04
Wieder RK, Vitt DH, Benscoter BW (2006) Peatlands and the boreal forest. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin, pp 1–8. https://doi.org/10.1007/978-3-540-31913-9_1
Rikala R, Heiskanen J (1995) Variation in the electrical conductivity and acidity of preculture peat growth media used in finnish tree nurseries. Scand J For Res. https://doi.org/10.1080/02827589509382880
Chemetova C, Quilhó T, Braga S et al (2019) Aged Acacia melanoxylon bark as an organic peat replacement in container media. J Clean Prod 232:1103–1111. https://doi.org/10.1016/j.jclepro.2019.06.064
Gruda NS (2019) Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 9:1–24. https://doi.org/10.3390/agronomy9060298
Chemetova C, Mota D, Fabião A, et al (2017) Valorization of Eucalyptus globulus bark as a growing-media component for potted plants. In: Conference on Environmental Science and Technology. https://cest2017.gnest.org/sites/default/files/presentation_file_list/cest2017_00437_poster_paper.pdf. Accessed 29 Aug 2021
Buamscha MG, Altland JE, Sullivan DM, et al (2008) Nitrogen availability in fresh and aged douglas fir bark. Horttechnology 18:619–623. https://doi.org/10.21273/horttech.18.4.619
Trillas MI, Casanova E, Cotxarrera L et al (2006) Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biol Control 39:32–38. https://doi.org/10.1016/j.biocontrol.2006.05.007
Nelson EB (1983) The role of microorganisms in the suppression of rhizoctonia solani in container media amended with composted hardwood bark. Phytopathology 73:274–278. https://doi.org/10.1094/phyto-73-274
Hardy GESJ, Sivasithamparam K (1995) Antagonism of fungi and actinomycetes isolated from composted eucalyptus bark to Phytophthora drechsleri in a steamed and non-steamed composted eucalyptus bark-amended container medium. Soil Biol Biochem 27:243–246. https://doi.org/10.1016/0038-0717(94)00172-W
Prasad M, Maher MJ (2004) Stability of peat alternatives and use of moderately decomposed peat as a structure builder in growing media. Acta Hortic. https://doi.org/10.17660/ActaHortic.2004.648.17
Domeño I, Irigoyen I, Muro J (2010) New wood fibre substrates characterization and evaluation in hydroponic tomato culture. Eur J Hortic Sci 75:89–94. https://woodsubstrates.cals.ncsu.edu/files/2020/02/new-wood-fibre-substrates.pdf. Accessed 29 Aug 2021
Burgel L, Hartung J, Graeff-Hönninger S (2020) Impact of different growing substrates on growth, yield and cannabinoid content of two cannabis sativa L. genotypes in a pot culture. Horticulturae. https://doi.org/10.3390/horticulturae6040062
Coirpith Wealth From Waste (2016). In: Minist. Micro, Small Mediu. Enterp. Gov. India. http://coirboard.gov.in/wp-content/uploads/2016/07/Coir-Pith.pdf. Accessed 15 Feb 2021
Meerow A (1997) Coir dust, a viable alternative to peat moss. Greenh Prod News. https://www.researchgate.net/publication/239530350_Coir_Dust_A_Viable_Alternative_to_Peat_Moss. Accessed 29 Aug 2021
Arenas M, Vavrina CS, Cornell JA, et al (2002) Coir as an alternative to peat in media for tomato transplant production. HortScience. https://doi.org/10.21273/hortsci.37.2.309
Evans MR, Stamps RH (1996) Growth of bedding plants in sphagnum peat and coir dust-based substrates. J Environ Hortic 14:187–190. https://doi.org/10.24266/0738-2898-14.4.187
De Kreij C, Van Leeuwen GJL (2001) Growth of pot plants in treated coir dust as compared to peat. Commun Soil Sci Plant Anal 32:2255–2265. https://doi.org/10.1081/CSS-120000281
Gruda N (2012) Current and future perspective of growing media in Europe. Acta Hortic 960:37–43. https://doi.org/10.17660/ActaHortic.2012.960.3
Blok C, Wever G (2008) Experience with selected physical methods to characterize the suitability of growing media for plant growth. Acta Hortic 779:239–250. https://doi.org/10.17660/actahortic.2008.779.29
Nelson P V, Oh Y-M, Cassel DK (2004) Changes in physical properties of coir dust substrates during crop production. Acta Hortic 644:261–268. https://doi.org/10.17660/ActaHortic.2004.644.35
Silber A (2019) Chemical characteristics of soilless media. In: Soilless culture: theory and practice, second edi. Elsevier, Academic Press, pp 113–148. https://doi.org/10.1016/B978-044452975-6.50008-3
Prabhu SR, Thomas GV (2002) Biological conversion of coir pith into a value-added organic resource and its application in agri-horticulture: current status, prospects and perspective. J Plant Crop 30:1–17
Udayana SK, Naorem A, Singh NA (2017) The multipurpose utilization of coconut by-products in agriculture: prospects and concerns. Int J Curr Microbiol Appl Sci 6:1408–1415. https://doi.org/10.20546/ijcmas.2017.606.165
Export of Coir and Coir products from India. In: Coir Board, Minist. Micro, Small Mediu. Enterp. Gov. India. http://coirboard.gov.in/wp-content/uploads/2021/01/Last-5-Years-Export-2019-20.pdf. Accessed 15 Feb 2021
Association of American Plant Food Control Officials (2017) AAPFCO product label guide. http://www.aapfco.org/pdf/product_label_guide.pdf. Accessed 15 Feb 2021
Gondek M, Weindorf DC, Thiel C, Kleinheinz G (2020) Soluble salts in compost and their effects on soil and plants: a review. Compost Sci Util 28:59–75. https://doi.org/10.1080/1065657X.2020.1772906
Zhang D, Luo W, Li Y et al (2018) Performance of co-composting sewage sludge and organic fraction of municipal solid waste at different proportions. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.08.136
Pardo T, Clemente R, Bernal MP (2011) Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities. Chemosphere 84:642–650. https://doi.org/10.1016/j.chemosphere.2011.03.037
Stewart-Wade SM (2020) Efficacy of organic amendments used in containerized plant production: Part 1 – Compost-based amendments. Sci Hortic (Amsterdam) 266:108856. https://doi.org/10.1016/j.scienta.2019.108856
Bustamante MA, Gomis MP, Pérez-Murcia MD et al (2021) Use of livestock waste composts as nursery growing media: effect of a washing pre-treatment. Sci Hortic (Amsterdam) 281:109954. https://doi.org/10.1016/j.scienta.2021.109954
van der Gaag DJ, van Noort FR, Stapel-Cuijpers LHM et al (2007) The use of green waste compost in peat-based potting mixtures: Fertilization and suppressiveness against soilborne diseases. Sci Hortic (Amsterdam) 114:289–297. https://doi.org/10.1016/j.scienta.2007.06.018
Carballo T, Gil MV, Calvo LF, Morán A (2009) The influence of aeration system, temperature and compost origin on the phytotoxicity of compost tea. Compost Sci Util 17:127–139. https://doi.org/10.1080/1065657X.2009.10702411
Smith M (2018) Do microplastic residuals in municipal compost bioaccumulate in plant tissue?
Suo LN, Sun XY, Li SY (2011) Use of organic agricultural wastes as growing media for the production of Anthurium andraeanum “Pink Lady.” J Hortic Sci Biotechnol 86:366–370. https://doi.org/10.1080/14620316.2011.11512775
Lazcano C, Arnold J, Tato A et al (2009) Compost and vermicompost as nursery pot components: effects on tomato plant growth and morphology. Spanish J Agric Res. https://doi.org/10.5424/sjar/2009074-1107
Hernández-Apaolaza L, Gascó AM, Gascó JM, Guerrero F (2005) Reuse of waste materials as growing media for ornamental plants. Bioresour Technol. https://doi.org/10.1016/j.biortech.2004.02.028
Veeken A, Blok WJ, Curci F, et al (2005) Improving quality of composted biowaste to enhance disease suppressiveness of compost-amended, peat-based potting mixes. Soil Biol Biochem 37:. https://doi.org/10.1016/j.soilbio.2005.03.018
Costello RC, Sullivan DM, Bryla DR, et al (2019) Compost feedstock and compost acidification affect growth and mineral nutrition in Northern Highbush Blueberry. HortScience 54:1067–1076. https://doi.org/10.21273/HORTSCI13599-18
Bilderback TE, Fonteno WC, Johnson DR et al (1982) Physical properties of media composed of peanut hulls pine bark and peat moss and their effects on azalea rhododendron indicum growth. J Am Soc Hortic Sci 107:522–525
Bonaguro JE, Coletto L, Zanin G (2017) Environmental and agronomic performance of fresh rice hulls used as growing medium component for Cyclamen persicum L. pot plants. J Clean Prod 142:2125–2132. https://doi.org/10.1016/j.jclepro.2016.11.071
Zanin G, Coletto L, Passoni M, et al (2016) Organic by-product substrate components and biodegradable pots in the production of Pelargonium × hortorum Bailey and Euphorbia pulcherrima L. In: Acta Horticulturae. https://doi.org/10.17660/ActaHortic.2016.1112.50
Altland J (2010) Use of processed biofuel crops for nursery substrates. J Environ Hortic 28:129–134. https://doi.org/10.24266/0738-2898-28.3.129
Altland J, Locke J (2011) Use of ground miscanthus straw in container nursery substrates. J Environ Hortic 29:114–118. https://doi.org/10.24266/0738-2898-29.3.114
Locke JC, Altland JE (2012) Use of ground wheat straw in container nursery substrates to overwinter daylily divisions. J Environ Hortic 30:207–210. https://doi.org/10.24266/0738-2898.30.4.207
Ruis SJ, Blanco-Canqui H, Paparozzi ET, Zeeck R (2019) Using processed corn stover as an alternative to peat. HortScience 54:385–394. https://doi.org/10.21273/HORTSCI13453-18
Yue XH, Miao LF, Yang F, Nawaz M (2020) Morphological and physiological responses of Dalbergia odorifera T. Chen seedlings to different culture substances. PLoS ONE 15:1–16. https://doi.org/10.1371/journal.pone.0232051
Evans MR, Vancey L (2007) Physical properties of processed poultry feather fiber-containing greenhouse root substrates. Horttechnology 17:301–304. https://doi.org/10.21273/horttech.17.3.301
Benedetto D, Adalberto PJC et al (2006) Evaluation of alternative substrates for bedding plants. Int J Agric Res 1:545–554
Singh A, Karmegam N, Singh GS et al (2020) Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt. Environ Geochem Health 42:1617–1642. https://doi.org/10.1007/s10653-019-00510-4
Arancon NQ, Edwards CA, Babenko A et al (2008) Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse. Appl Soil Ecol. https://doi.org/10.1016/j.apsoil.2007.11.010
Orozco FH, Cegarra J, Trujillo LM, Roig A (1996) Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents and the availability of nutrients. Biol Fertil Soils. https://doi.org/10.1007/BF00384449
Arancon NQ, Edwards CA, Lee S, Byrne R (2006) Effects of humic acids from vermicomposts on plant growth. Eur J Soil Biol. https://doi.org/10.1016/j.ejsobi.2006.06.004
Nikbakht A, Kafi M, Babalar M et al (2008) Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. J Plant Nutr. https://doi.org/10.1080/01904160802462819
Atiyeh RM, Edwards CA, Subler S, Metzger JD (2000) Earthworm-processed organic wastes as components of horticultural potting media for growing marigold and vegetable seedlings. Compost Sci Util 8:215–223. https://doi.org/10.1080/1065657X.2000.10701994
Coulibaly SS, Edoukou FE, Kouassi KI, et al (2018) Vermicompost utilization: a way to food security in rural area. Heliyon 4:. https://doi.org/10.1016/j.heliyon.2018.e01104
Tomati U, Grappelli A, Galli E (1988) The hormone-like effect of earthworm casts on plant growth. Biol Fertil Soils. https://doi.org/10.1007/BF00262133
Demir Z (2020) Alleviation of adverse effects of sodium on soil physicochemical properties by application of vermicompost. Compost Sci Util. https://doi.org/10.1080/1065657X.2020.1789011
Manh VH, Wang CH (2014) Vermicompost as an important component in substrate: effects on seedling quality and growth of muskmelon (Cucumis melo L.). APCBEE Procedia. https://doi.org/10.1016/j.apcbee.2014.01.076
Wang XX, Zhao F, Zhang G et al (2017) Vermicompost improves tomato yield and quality and the biochemical properties of soils with different tomato planting history in a greenhouse study. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01978
Abbey L, Young C, Teitel-Payne R, Howe K (2012) Evaluation of proportions of vermicompost and coir in a medium for container-Grown Swiss Chard. Int J Veg Sci. https://doi.org/10.1080/19315260.2011.585702
Conversa G, Bonasia A, Lazzizera C, Elia A (2015) Influence of biochar, mycorrhizal inoculation, and fertilizer rate on growth and flowering of Pelargonium (Pelargonium zonale L.) plants. Front Plant Sci 6:429. https://doi.org/10.3389/fpls.2015.00429
Steiner C, Harttung T (2014) Biochar as growing media additive and peat substitute. Solid Earth Discuss 6:1023–1035. https://doi.org/10.5194/sed-6-1023-2014
Headlee WL, Brewer CE, Hall RB (2014) Biochar as a substitute for vermiculite in potting mix for hybrid poplar. Bioenergy Res 7:120–131. https://doi.org/10.1007/s12155-013-9355-y
Locke JC, Altland JE, Ford CW (2013) Gasified rice hull biochar affects nutrition and growth of horticultural crops in container substrates. J Environ Hortic 31:195–202. https://doi.org/10.24266/0738-2898.31.4.195
Méndez A, Paz-Ferreiro J, Gil E, Gascó G (2015) The effect of paper sludge and biochar addition on brown peat and coir based growing media properties. Sci Hortic (Amsterdam) 193:225–230. https://doi.org/10.1016/j.scienta.2015.07.032
Zhang L, Sun X, yang, Tian Y, Gong X qiang, (2014) Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Sci Hortic (Amsterdam) 176:70–78. https://doi.org/10.1016/j.scienta.2014.06.021
Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant Soil 300:9–20. https://doi.org/10.1007/s11104-007-9391-5
Głodowska M, Husk B, Schwinghamer T, Smith D (2016) Biochar is a growth-promoting alternative to peat moss for the inoculation of corn with a pseudomonad. Agron Sustain Dev 36:21. https://doi.org/10.1007/s13593-016-0356-z
Vecstaudza D, Senkovs M, Nikolajeva V et al (2017) Wooden biochar as a carrier for endophytic isolates. Rhizosphere 3:126–127. https://doi.org/10.1016/j.rhisph.2017.04.002
Amery F, Debode J, Ommeslag S, et al (2021) Biochar for circular horticulture: feedstock related effects in soilless cultivation. Agronomy 11:. https://doi.org/10.3390/agronomy11040629
Song W, Guo M (2012) Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J Anal Appl Pyrolysis 94:138–145. https://doi.org/10.1016/j.jaap.2011.11.018
Nieto A, Gascó G, Paz-Ferreiro J et al (2016) The effect of pruning waste and biochar addition on brown peat based growing media properties. Sci Hortic (Amsterdam) 199:142–148. https://doi.org/10.1016/j.scienta.2015.12.012
Tian Y, Sun X, Li S et al (2012) Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata Sci Hortic (Amsterdam) 143:15–18. https://doi.org/10.1016/j.scienta.2012.05.018
Papadopoulos A, Bar-Tal A, Silber A, et al (2008) Inorganic and synthetic organic components of soilless culture and potting mixes. In: Soilless culture: theory and practice. pp 505–543. https://doi.org/10.1016/B978-044452975-6.50014-9
Kaniszewski S, Dyśko J, Kowalczyk W et al (2010) Effect of nitration of organic materials on nitrogen availability and yield of tomato in soilless culture. Veg Crop Res Bull 72:71–81. https://doi.org/10.2478/v10032-010-0007-x
Hoitink HAJ, Boehm M (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446. https://doi.org/10.1146/annurev.phyto.37.1.427
Sunil L, Appaiah P, Kumar PKP (2015) Preparation of food supplements from oilseed cakes. J Food Sci Technol 52:2998–3005. https://doi.org/10.1007/s13197-014-1386-7
Sarker AK, Saha D, Begum H, et al (2015) Comparison of cake compositions, pepsin digestibility and amino acids concentration of proteins isolated from black mustard and yellow mustard cakes. AMB Express 5:. https://doi.org/10.1186/s13568-015-0110-y
Bhattacharya D, Goswami B (1987) Comparative efficacy of neem and groundnut oil-cakes with aldicarb against meloidogyne incognita in tomato. Rev nématologie 10:467–470
Radwan MA, El-Maadawy EK, Kassem SI, Abu-Elamayem MM (2009) Oil cakes soil amendment effects on Meloidogyne incognita, root-knot nematode infecting tomato. Arch Phytopathol Plant Prot. https://doi.org/10.1080/03235400600940830
Sumbul A, Rizvi R, Mahmood I, Ali Ansari R (2015) Oil-cake amendments: useful tools for the management of phytonematodes. Asian J Plant Pathol. https://doi.org/10.3923/ajppaj.2015.91.111
Rizvi R, Singh G, Safiuddin, et al (2015) Sustainable management of root-knot disease of tomato by neem cake and Glomus fasciculatum. Cogent Food Agric. https://doi.org/10.1080/23311932.2015.1008859
Parveen G, Mukhtar N, Kaleemullah, Sheikh MK (2019) Enhancement of growth and suppressing the root diseases of tomato plant by using organic amendment. Pure Appl Biol. https://doi.org/10.19045/bspab.2019.80051
Oyinlola E, Paul O, E.O U (2017) Effect of neem seed cake and inorganic fertilizer on yield of tomato and soil properties in northern guinea savanna of nigeria. Eur J Agric For Res 5:1–15. https://www.researchgate.net/publication/323014678_effect_of_neem_seed_cake_and_inorganic_fertilizer_on_yield_of_tomato_and_soil_properties_in_northern_guinea_savanna_of_nigeria. Accessed 29 Aug 2021
Vaughn SF, Deppe NA, Berhow MA, Evangelista RL (2010) Lesquerella press cake as an organic fertilizer for greenhouse tomatoes. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2010.04.008
Lima RLS, Severino LS, Sampaio LR et al (2011) Blends of castor meal and castor husks for optimized use as organic fertilizer. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2010.11.008
Gupta AP, Antil RS, Narwal RP (2004) Utilization of deoiled castor cake for crop production. Arch Agron Soil Sci. https://doi.org/10.1080/03650340410001663891
Ahluwalia S (2018) Effect of raw, defatted and detoxified Jatropha seed cake on germination of green gram (Vigna radiata). Int J Res Appl Sci Eng Technol 6:1033–1041. https://doi.org/10.22214/ijraset.2018.1156
Mondal S, Das R, Das AC (2014) A comparative study on the decomposition of edible and non-edible oil cakes in the Gangetic alluvial soil of West Bengal. 5199–5207. https://doi.org/10.1007/s10661-014-3769-7
Rogato AL japonicus, D’Apuzzo E, Chiurazzi M (2010) The multiple plant response to high ammonium conditions: the Lotus japonicus AMT1; 3 protein acts as a putative transceptor. Plant Signal Behav 5:1594–1596. https://doi.org/10.4161/psb.5.12.13856
Pratibha SS, Hariprasad P (2020) Development and evaluation of deoiled seed cake and paddy straw amended potting media for the cultivation of tomato and cucumber. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-020-01264-2
Zhang G, Kazanietz MG, Blumberg PM, Hurley JH (1995) Crystal structure of the Cys2 activator-binding domain of protein kinase Cδ in complex with phorbol ester. Cell. https://doi.org/10.1016/0092-8674(95)90011-X
King A, He W, Cuevas J et al (2009) Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot 60:2897–2905. https://doi.org/10.1093/jxb/erp025
Andrade LF, Davide LC, Gedraite LS (2010) The effect of cyanide compounds, fluorides, aluminum, and inorganic oxides present in spent pot liner on germination and root tip cells of Lactuca sativa. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2009.12.012
Wang XH, Ou L, Fu LL et al (2013) Detoxification of Jatropha curcas kernel cake by a novel Streptomyces fimicarius strain. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2013.05.012
Bhattacharyya P, Bhaduri D, Adak T et al (2020) Characterization of rice straw from major cultivars for best alternative industrial uses to cutoff the menace of straw burning. Ind Crops Prod 143:111919. https://doi.org/10.1016/j.indcrop.2019.111919
Trivedi A, Verma AR, Kaur S et al (2017) Sustainable bio-energy production models for eradicating open field burning of paddy straw in Punjab. Energy, India. https://doi.org/10.1016/j.energy.2017.03.138
Singh J (2018) Paddy and wheat stubble blazing in Haryana and Punjab states of India: A menace for environmental health. Environ Qual Manag. https://doi.org/10.1002/tqem.21598
Kim Oanh NT, Ly BT, Tipayarom D et al (2011) Characterization of particulate matter emission from open burning of rice straw. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2010.09.023
Singh G, Tiwari A, Rathore H, et al (2020) Valorization of paddy straw using de-oiled cakes for P. ostreatus cultivation and utilization of spent mushroom substrate for biopesticide development. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-020-00957-y
Shoaib AM, El-Adly RA, Hassanean MHM et al (2018) Developing a free-fall reactor for rice straw fast pyrolysis to produce bio-products. Egypt J Pet. https://doi.org/10.1016/j.ejpe.2018.08.002
Chivenge P, Rubianes F, Van Chin D, et al (2020) Rice straw incorporation influences nutrient cycling and soil organic matter. In: Gummert M, Hung N Van, Chivenge P, Douthwaite B (eds) Sustainable Rice Straw Management. Springer International Publishing, Cham, pp 131–144. https://doi.org/10.1007/978-3-030-32373-8_8
Kowalska J, Tyburski J, Jakubowska M, Krzymińska J (2021) Effect of different forms of silicon on growth of spring wheat cultivated in organic farming system. SILICON. https://doi.org/10.1007/s12633-020-00414-4
Luyckx M, Hausman JF, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00411
Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot. https://doi.org/10.1093/aob/mcm247
Van Hung N, Maguyon-Detras MC, Migo MV, et al (2020) Rice straw overview: availability, properties, and management practices. In: Gummert M, Hung N Van, Chivenge P, Douthwaite B (eds) Sustainable rice straw management. Springer International Publishing, Cham, pp 1–13. https://doi.org/10.1007/978-3-030-32373-8_1
Ali HI, Ismail MR, Manan MM, Saudi HM (2006) Rice straw compost and water deficit affect yield, quality and water use efficiency (WUE) of tomatoes grown in different media. Biol Agric Hortic. https://doi.org/10.1080/01448765.2006.9755028
Feng J, Zhi Y, Zhang D et al (2020) Rice straw as renewable components of horticultural growing media for purple cabbage. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.141274
Ahmed M, Farag A, Abdrabbo M, et al (2015) Utilization of rice straw in tomato production under different levels of water requirements. Egypt J Agric Res 93:377–389. https://www.researchgate.net/publication/316243055_utilization_of_rice_straw_in_tomato_production_under_different_levels_of_water_requirements. Accessed 29 Aug 2021
Farag AA, Ahmed MSM, Hashem FA, et al (2015) Utilization of rice straw and vermicompost in vegetable production via soilless culture. Glob J Adv Res 2:800–813. https://www.researchgate.net/publication/299595199_utilization_of_rice_straw_and_vermicompost_in_vegetable_production_via_soilless_culture. Accessed 29 Aug 2021
El-Marzoky HA, Abdel-Sattar MA (2008) Influence of growing sweet pepper in compacted rice straw bales compared with natural soil, on infection with pathogenic fungi and nematodes under greenhouse conditions. Arab Univ J Agric Sci. https://doi.org/10.21608/ajs.2008.15023
Sadek I, Moursy F, Salem E, et al (2014) Enhancing rice straw media for growing eggplant under modified climatic conditions using compost and bacterial inoculation. Nat Sci 12:8–20. https://www.researchgate.net/publication/317265175_Enhancing_Rice_Straw_Media_for_Growing_Eggplant_under_Modified_Climatic_Conditions_Using_Compost_and_Bacterial_Inoculation. Accessed 29 Aug 2021
De Lucia B, Cristiano G, Vecchietti L, et al (2013) Nursery growing media: agronomic and environmental quality assessment of sewage sludge-based compost. Appl Environ Soil Sci 2013:. https://doi.org/10.1155/2013/565139
Vecchietti L, De Lucia B, Russo G, et al (2013) Environmental and agronomic evaluation of containerized substrates developed from sewage sludge compost for ornamental plant production. Acta Hortic 1013:431–439. https://doi.org/10.17660/ActaHortic.2013.1013.54
Prasad M, Carlile W (2009) Practical experiences and background research on the use of composted materials in growing media for the UK market. In: Acta Hortic. 819. pp 111–124. https://doi.org/10.17660/ActaHortic.2009.819.10
Diara C, Incrocci L, Pardossi A, Minuto A (2012) Reusing greenhouse growing media. Acta Hortic 927:793–800. https://doi.org/10.17660/ActaHortic.2012.927.98
Vandecasteele B, Blindeman L, Amery F et al (2020) Grow - store - steam - re-peat: reuse of spent growing media for circular cultivation of Chrysanthemum. J Clean Prod 276:124128. https://doi.org/10.1016/j.jclepro.2020.124128
Zucchi P, Longa CMO, Bertoldi D, et al (2017) Effects of organic substrate reuse on growth and yield of everbearing “Capri” strawberry. Acta Hortic 1156:579–586. https://doi.org/10.17660/ActaHortic.2017.1156.86
Baevre OA, Guttormsen G (1984) Reuse of peat bags for tomatoes and cucumbers. Plant Soil 77:207–214. http://www.jstor.org/stable/42934527. Accessed 29 Aug 2021
Viaene J, Reubens B, Willekens K et al (2017) Potential of chopped heath biomass and spent growth media to replace wood chips as bulking agent for composting high N-containing residues. J Environ Manage 197:338–350. https://doi.org/10.1016/j.jenvman.2017.03.086
Bussell WT, McKennie S (2004) Rockwool in horticulture, and its importance and sustainable use in New Zealand. New Zeal J Crop Hortic Sci 32:29–37. https://doi.org/10.1080/01140671.2004.9514277
Caporn SJM, Hutchinson TC (1986) The contrasting response to simulated acid rain of leaves and cotyledons of cabbage (Brassica oleracea L.). New Phytol. https://doi.org/10.1111/j.1469-8137.1986.tb00618.x
Follmer CM, Hummes AP, Lângaro NC et al (2021) Nutrient availability and pH level affect germination traits and seedling development of Conyza canadensis. Sci Rep 11:15607. https://doi.org/10.1038/s41598-021-95164-7
Fernández FG, Hoeft RG Managing soil pH and crop nutrients. In: Illinois Agron. Handb. http://extension.cropsciences.illinois.edu/handbook/pdfs/chapter08.pdf. Accessed 6 Sep 2021
Costa-Gutierrez SB, Lami MJ, Di SMCC et al (2020) Plant growth promotion by Pseudomonas putida KT2440 under saline stress: role of eptA. Appl Microbiol Biotechnol 104:4577–4592. https://doi.org/10.1007/s00253-020-10516-z
Ding X, Jiang Y, Zhao H et al (2018) Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. Ssp. Chinensis) in a hydroponic system. PLoS ONE 13:1–15. https://doi.org/10.1371/journal.pone.0202090
Akratos CS, Tekerlekopoulou AG, Vasiliadou IA, Vayenas D V. (2017) Cocomposting of olive mill waste for the production of soil amendments. In: Olive mill waste: recent advances for sustainable management. Elsevier Inc., pp 161–182. https://doi.org/10.1016/B978-0-12-805314-0.00008-X
Leite MFA, Pan Y, Bloem J et al (2017) Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank. Sci Rep 7:42634. https://doi.org/10.1038/srep42634
Mohanty M, Sinha NK, Sammi Reddy K et al (2013) How important is the quality of organic amendments in relation to mineral N availability in soils? Agric Res 2:99–110. https://doi.org/10.1007/s40003-013-0052-z