Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá tính bền vững của hệ sinh thái nông nghiệp ở Trung Quốc
Tóm tắt
Môi trường sinh thái nông nghiệp ở Trung Quốc đang đối mặt với nguy cơ xấu đi cùng với sự phát triển của công nghiệp hóa và đô thị hóa. Làm thế nào để đánh giá rủi ro sinh thái nông nghiệp đã trở thành một vấn đề lý thuyết và thực tiễn quan trọng. Bởi vì hệ thống nông nghiệp là một hệ thống phức tạp bao gồm các tiểu hệ thống xã hội, kinh tế và môi trường, phương pháp phân tích quyết định đa tiêu chí (MCDA) là một lựa chọn khả thi cho việc đánh giá tính bền vững của nó. Bài báo này cải thiện phương pháp MCDA truyền thống từ ba khía cạnh: định nghĩa chỉ số rủi ro, chuyển đổi hàm phân phối logic của các biến chỉ số và đo lường trọng số của chỉ số tổng hợp. Nghiên cứu chỉ ra rằng phương pháp phân tích quyết định đa tiêu chí cải tiến (IMCDA) phù hợp để đánh giá các hệ thống phức tạp như hệ sinh thái nông nghiệp. Nghiên cứu tìm thấy rằng chỉ số rủi ro tổng hợp sinh thái nông nghiệp của Trung Quốc có sự thay đổi hình chữ V trong khoảng thời gian mẫu. Đồng thời, có một tình trạng cực kỳ bất ổn trong khoảng thay đổi.
Từ khóa
#nông nghiệp #hệ sinh thái #đánh giá rủi ro #bền vững #phân tích quyết định đa tiêu chíTài liệu tham khảo
Bai, Z. H., Schmidt-Traub, G. D., Xu, J. C., Liu, L., Jin, X. P., & Ma, L. (2020). A food system revolution for China in the post-pandemic world. Resources, Environment and Sustainability, 2, 100013. https://doi.org/10.1016/j.resenv.2020.100013
Batáry, P., Dicks, L. V., Kleijn, D., & Sutherland, W. J. (2015). The role of agri-environment schemes in conservation and environmental management. Conservation Biology, 29, 1006–1016. https://doi.org/10.1111/cobi.12536
Belton, S., & Stewart, T. S. (2002). Multiple Criteria Decision Analysis: An Integrated Approach. Kluwer Academic Publishers.
Breitung, J., Bruggemann, R., & Lutkepohl, H. (2004). Structural vector autoregressive modeling and impulse response. In H. Lutkepohl & M. Krätzig (Eds.), Applied Time Series Econometrics. London: Cambridge University Press.
Bystrzanowska, M., & Tobiszewski, M. (2018). How can analysts use multicriteria decision analysis? Trends in Analytical Chemistry, 105, 98–105. https://doi.org/10.1016/j.trac.2018.05.003
Chang, X.H., Zhao, G.C., Wang, D.M., Yang, Y.S., & Ma, S.K. (2016). Effects of ecological environment and nitrogen application rate on microelement contents of wheat grain. Proceedings of the Seventh International Crop Science Conference of Chinese Crop Society, 2016–08–14, pp. 565–572.
Cheng, H., Dong, S. C., Li, F. J., Yang, Y., Li, Y., & Li, Z. H. (2019). A circular economy system for breaking the development dilemma of ‘ecological fragility-economic poverty’ vicious circle: A CEEPS-SD analysis. Journal of Cleaner Production, 212, 381–392. https://doi.org/10.1016/j.jclepro.2018.12.014
Chi, Y., Shi, H., Zheng, W., Sun, J., & Fu, Z. (2018). Spatiotemporal characteristics and ecological effects of the human interference index of the Yellow River Delta in the last 30 years. Ecological Indicators, 89, 880–892. https://doi.org/10.1016/j.ecolind.2017.12.025
Chi, Y., Zhang, Z. W., Xie, Z. L., & Wang, J. (2020). How human activities influence the island ecosystem through damaging the natural ecosystem and supporting the social ecosystem? Journal of Cleaner Production, 248, 119203. https://doi.org/10.1016/j.jclepro.2019.119203
Dhiman, H. S., & Deb, D. (2020). Fuzzy TOPSIS and fuzzy COPRAS based multi-criteria decision making for hybrid wind farms. Energy, 202, 117755. https://doi.org/10.1016/j.energy.2020.117755
Di, B. F., Yang, Z. T., Liu, L., Yang, Y. F., & Li, J. R. (2020). The regionalized ecological, economic and social benefit of China’s sloping cropland erosion control during the 12th five-year plan (2011–2015). Journal of Environmental Management, 276, 111314. https://doi.org/10.1016/j.jenvman.2020.111314
Dou, X. S. (2018). Low carbon agriculture and GHG emission reduction in China: An analysis of policy perspective. Theoretical Economics Letters, 8, 538–556. https://doi.org/10.4236/tel.2018.83038
Ervural, B. C., Zaim, S., Demirel, O. F., Aydin, Z., & Delen, D. (2018). An ANP and fuzzy TOPSIS-based SWOT analysis for Turkey’s energy planning. Renewable & Sustainable Energy Reviews, 82, 1538–1550. https://doi.org/10.1016/j.rser.2017.06.095
He, Z. S., Jiang, L., Wang, Z., Zeng, R., Xu, D. W., & Liu, J. F. (2019). The emergy analysis of southern China agro-ecosystem and its relation with its regional sustainable development. Global Ecology and Conservation, 20, 00721. https://doi.org/10.1016/j.gecco.2019.e00721
Huang, P. H., Tsai, J. S., & Lin, W. T. (2010). Using multiple-criteria decision-making techniques for eco-environmental vulnerability assessment: A case study on the Chi-Jia-Wan Stream watershed, Taiwan. Environmental Monitoring and Assessment, 168, 141–158. https://doi.org/10.1007/s10661-009-1098-z
Kramer, J. S. (1991). The Logit Model for Economists. Edward Arnold Publishers.
Li, T., Dong, Y. X., & Liu, Z. H. (2020). A review of social-ecological system resilience: Mechanism, assessment and management. Science of the Total Environment, 723, 138113. https://doi.org/10.1016/j.scitotenv.2020.138113
Li, X. F. (2021). TOPSIS model with entropy weight for ecogeological environmental carrying capacity assessment. Microprocessors and Microsystems, 82, 103805. https://doi.org/10.1016/j.micpro.2020.103805
Liao, J. J., Yu, C. Y., Feng, Z., Zhao, H. F., Wu, K. N., & Ma, X. Y. (2021). Spatial differentiation characteristics and driving factors of agricultural eco-efficiency in Chinese provinces from the perspective of ecosystem services. Journal of Cleaner Production, 288, 125466. https://doi.org/10.1016/j.jclepro.2020.125466
Liu, D., Qi, X. C., Fu, Q., Li, M., Zhu, W. F., Zhang, L. L., Faiz, M. A., Khan, M. I., Li, T. X., & Cui, S. (2019). A resilience evaluation method for a combined regional gricultural water and soil resource system based on Weighted Mahalanobis distance and a Gray-TOPSIS model. Journal of Cleaner Production, 229, 667–679. https://doi.org/10.1016/j.jclepro.2019.04.406
Liu, X., Xu, Y. Y., Engel, B. A., Sun, S. K., Zhao, X. N., Wu, P. T., & Wang, Y. B. (2021). The impact of urbanization and aging on food security in developing countries: The view from Northwest China. Journal of Cleaner Production, 292, 126067. https://doi.org/10.1016/j.jclepro.2021.126067
Lu, Q. S., Liang, F. Y., Bi, X. L., Duffy, R., & Zhao, Z. P. (2011). Effects of urbanization and industrialization on agricultural land use in Shandong Peninsula of China. Ecological Indicators, 11, 1710–1714. https://doi.org/10.1016/j.ecolind.2011.04.026
Macharis, C., Turcksin, L., & Lebeau, K. (2012). Multi actor multi criteria analysis (MAMCA) as a tool to support sustainable decisions: State of use. Decision Support Systems, 54, 610–620. https://doi.org/10.1016/j.dss.2012.08.008
Mendoza, G. A., & Martins, H. (2006). Multi-criteria decision analysis in natural resource management: A critical review of methods and new modelling paradigms. Forest Ecology and Management, 230, 1–22. https://doi.org/10.1016/j.foreco.2006.03.023
Meuwissen, M. P. M., Feindt, P. H., Spiegel, A., Termeer, C. J. A. M., Mathijs, E., Mey, Y. D., Finger, R., Balmann, A., Wauters, E., Urquhart, J., Vigani, M., Zawalińska, K., Herrera, H., Nicholas-Davies, P., Hansson, H., Paas, W., Slijper, T., Coopmans, I., Vroege, W., … Reidsma, P. (2019). A framework to assess the resilience of farming systems. Agricultural Systems, 176, 102656. https://doi.org/10.1016/j.agsy.2019.102656
Melgar-Melgar, R. E., & Hall, C. A. S. (2020). Why ecological economics needs to return to its roots: The biophysical foundation of socio-economic systems. Ecological Economics, 169, 106567. https://doi.org/10.1016/j.ecolecon.2019.106567
Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736. https://doi.org/10.1016/j.jenvman.2020.111736
National Bureau of Statistics (2020). Annual data. http://www.stats.gov.cn. 2020-12-02.
Noack, E. M., & Schüler, S. (2020). Rural development and human well-being: Do pillar-II-programmes take into account ecosystem services? A study in Lower Saxony, Germany. Environmental Science & Policy, 106, 191–200. https://doi.org/10.1016/j.envsci.2020.01.020
Palczewski, K., & Sałabun, W. (2019). The fuzzy TOPSIS applications in the last decade. Procedia Computer Science, 159, 2294–2303. https://doi.org/10.1016/j.procs.2019.09.404
Qin, G. W., Niu, Z. D., Yu, J. D., Li, Z. H., Ma, J. Y., & Xiang, P. (2021). Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere, 267, 129205. https://doi.org/10.1016/j.chemosphere.2020.129205
Qiu, L. F., Zhang, M., Zhou, B. B., Cui, Y. Z., Yu, Z. L., Liu, T., & Wu, S. H. (2021). Economic and ecological trade-offs of coastal reclamation in the Hangzhou Bay, China. Ecological Indicators, 125, 107477. https://doi.org/10.1016/j.ecolind.2021.107477
Saifi, B., & Drake, L. (2008). A coevolutionary model for promoting agricultural sustainability. Ecological Economics, 65, 24–34. https://doi.org/10.1016/j.ecolecon.2007.11.008
Şengül, Ü., Eren, M., Shiraz, S. E., Gezder, V., & Şengül, A. B. (2015). Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renewable Energy, 75, 617–625. https://doi.org/10.1016/j.renene.2014.10.045
Song, X. Q., Yang, L. E., Xia, F. Z., Zhao, G. S., Xiang, J. W., & Scheffran, J. (2020). An inverted U-shaped curve relating farmland vulnerability to biological disasters: Implications for sustainable intensifification in China. Science of the Total Environment, 732, 138829. https://doi.org/10.1016/j.scitotenv.2020.138829
Sun, J. T., Pan, L. L., Tsang, D. C. W., Zhan, Y., Zhu, L. Z., & Li, X. D. (2018). Organic contamination and remediation in the agricultural soils of China: A critical review. Science of the Total Environment, 615, 724–740. https://doi.org/10.1016/j.scitotenv.2017.09.271
Talukder, B., Blay-Palmer, A., Hipel, K. W., & VanLoon, G. W. (2017). Elimination method of multi-criteria decision analysis (MCDA): A simple methodological approach for assessing agricultural sustainability. Sustainability, 9, 287. https://doi.org/10.3390/su9020287
Tong, Q. M., Swallow, B., Zhang, L., & Zhang, J. B. (2019). The roles of risk aversion and climate-smart agriculture in climate risk management: Evidence from rice production in the Jianghan Plain, China. Climate Risk Management, 26, 100199. https://doi.org/10.1016/j.crm.2019.100199
Vermunt, D. A., Negro, S. O., Van Laerhoven, F. S. J., Verweij, P. A., & Hekkert, M. P. (2020). Sustainability transitions in the agri-food sector: How ecology affects transition dynamics. Environmental Innovation and Societal Transitions, 36, 236–249. https://doi.org/10.1016/j.eist.2020.06.003
Wang, S. A., Adhikari, K., Zhuang, Q. L., Gu, H. L., & Jin, X. X. (2020). Impacts of urbanization on soil organic carbon stocks in the northeast coastal agricultural areas of China. Science of the Total Environment, 721, 137814. https://doi.org/10.1016/j.scitotenv.2020.137814
Yang, T., Zhang, Q., Wan, X. H., Li, X. P., Wang, Y. Y., & Wang, W. (2020). Comprehensive ecological risk assessment for semi-arid basin based on conceptual model of risk response and improved TOPSIS model-a case study of Wei River Basin, China. Science of the Total Environment, 719, 137502. https://doi.org/10.1016/j.scitotenv.2020.137502
Zhang, B., Jin, P. F., Qiao, H., Hayat, T., Alsaedi, A., & Ahmad, B. (2019). Exergy analysis of Chinese agriculture. Ecological Indicators, 105, 279–291. https://doi.org/10.1016/j.ecolind.2017.08.054
Zhang, S., Tan, Q., Cai, Y. P., Zhang, T., & Song, G. (2019). Mathematical analyses of ecological and economic tradeoffs in irrigated agriculture based on inexact optimization principles and hierarchical crop projections. Journal of Cleaner Production, 235, 69–84. https://doi.org/10.1016/j.jclepro.2019.06.165
Zheng, W. W., Ke, X. L., Xiao, B. Y., & Zhou, T. (2019). Optimising land use allocation to balance ecosystem services and economic benefits: A case study in Wuhan, China. Journal of Environmental Management, 248, 109306. https://doi.org/10.1016/j.jenvman.2019.109306
Zhou, M. M., Deng, J. S., Lin, Y., Zhang, L. J., He, S., & Yang, W. (2021). Evaluating combined effects of socio-economic development and ecological conservation policies on sediment retention service in the Qiantang River Basin, China. Journal of Cleaner Production, 286, 124961. https://doi.org/10.1016/j.jclepro.2020.124961
Zhou, Y., Li, Y. R., & Liu, Y. S. (2020). The nexus between regional eco-environmental degradation and rural impoverishment in China. Habitat International, 96, 102086. https://doi.org/10.1016/j.habitatint.2019.102086