Agricultural area losses and pollinator mismatch due to climate changes endanger passion fruit production in the Neotropics
Tài liệu tham khảo
Augusto, 2012, Microsatellite loci for the carpenter bee Xylocopa frontalis (Apidae, Xylocopini), Conserv. Genet. Resour., 4, 315, 10.1007/s12686-011-9536-y
Bartomeus, 2013, Biodiversity ensures plant–pollinator phenological synchrony against climate change, Ecol. Lett., 16, 1331, 10.1111/ele.12170
Bezerra, 2018, Data relating to threats to passion fruit production in the Neotropics due to agricultural area loss and pollinator mismatch as consequence of climate changes, Data in Brief
Biesmeijer, 2006, Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands, Science, 313, 351, 10.1126/science.1127863
Brown, 2016, A horizon scan of future threats and opportunities for pollinators and pollination, PeerJ, 4, 10.7717/peerj.2249
Bruckner, 1993, Self-incompatibility in passion fruit (Passiflora edulis Sims), Acta Hortic., 370, 45, 10.17660/ActaHortic.1993.339.4
Burkle, 2013, Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function, Science, 339, 1611, 10.1126/science.1232728
Cameron, 2011, Patterns of widespread decline in north American bumble bees, Proc. Natl. Acad. Sci., 108, 662, 10.1073/pnas.1014743108
Camillo, 1996, Utilização de espécies Xylocopa (Hymenoptera, Anthophoridae) na polinização do maracujá amarelo, 141
Challinor, 2014, A meta-analysis of crop yield under climate change and adaptation, Nat. Clim. Chang., 4, 287, 10.1038/nclimate2153
Corbet, 1980, Pollination of the yellow passionfruit: nectar, pollen and carpenter bees, J. Agric. Sci., 95, 655, 10.1017/S0021859600088055
Elias, 2017, Climate change threatens pollination services in tomato crops in Brazil, Agric. Ecosyst. Environ., 239, 257, 10.1016/j.agee.2017.01.026
FAO, 2017
Forister, 2010, Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity, Proc. Natl. Acad. Sci. U. S. A., 107, 2088, 10.1073/pnas.0909686107
Freitas, 2001, 96
Freitas, 2003, Ninhos racionais para mamangava (Xylocopa frontalis) na polinização do maracujá-amarelo (Passiflora edulis), Cienc. Rural, 33, 1135, 10.1590/S0103-84782003000600021
Freitas, 2009, Diversity, threats and conservation of native bees in the Neotropics, Apidologie, 40, 332, 10.1051/apido/2009012
Freitas, 2017, 72
Giannini, 2013, Identifying the areas to preserve passion fruit pollination service in Brazilian Tropical Savannas under climate change, Agric. Ecosyst. Environ., 171, 39, 10.1016/j.agee.2013.03.003
Giannini, 2017, Projected climate change threatens pollinators and crop production in Brazil, PLoS One, 12, 10.1371/journal.pone.0182274
Hegland, 2009, How does climate warming affect plant-pollinator interactions?, Ecol. Lett., 12, 184, 10.1111/j.1461-0248.2008.01269.x
Hijmans, 2005, Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965, 10.1002/joc.1276
Hijmans
IBGE
Imbach, 2017, Coupling of pollination services and coffee suitability under climate change, Proc. Natl. Acad. Sci., 114, 10438, 10.1073/pnas.1617940114
IPBES, 2016, Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production, 36
IPCC, 2013, 1535
Junqueira, 2013, Nest management increases pollinator density in passion fruit orchards, Apidologie, 44, 729, 10.1007/s13592-013-0219-4
Kerr, 2015, Climate change impacts on bumblebees converge across continents, Science, 349, 177, 10.1126/science.aaa7031
Kjøhl, 2011
Klein, 2007, Importance of pollinators in changing landscapes for world crops, Proc. R. Soc. B, 274, 303, 10.1098/rspb.2006.3721
Kremen, 2002, Crop pollination from native bees at risk from agricultural intensification, Proc. Natl. Acad. Sci., 99, 16812, 10.1073/pnas.262413599
Lobell, 2011, Climate trends and global crop production since 1980, Science, 333, 616, 10.1126/science.1204531
Meeus, 2012, Molecular detection of Spiroplasma apis and Spiroplasma melliferum in bees, J. Invertebr. Pathol., 109, 172, 10.1016/j.jip.2011.11.006
Oliveira Filho, 2003, Colonização e biologia reprodutiva de mamangavas (Xylocopa frontalis) em um modelo de ninho racional, Cienc. Rural, 33, 693, 10.1590/S0103-84782003000400017
Oliver, 2015, Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies, Nat. Clim. Chang., 5, 941, 10.1038/nclimate2746
Ollerton, 2011, How many flowering plants are pollinated by animals?, Oikos, 120, 321, 10.1111/j.1600-0706.2010.18644.x
Parmesan, 1999, Poleward shifts in geographical ranges of butterfly species associated with regional warming, Nature, 399, 579, 10.1038/21181
Phillips, 2006, Maximum entropy modeling of species geographic distributions, Ecol. Model., 190, 231, 10.1016/j.ecolmodel.2005.03.026
Polce, 2014, Climate-driven spatial mismatches between British orchards and their pollinators: increased risks of pollination deficits, Glob. Change Biol., 20, 2815, 10.1111/gcb.12577
Potts, 2010, Global pollinator declines: trends, impacts and drivers, Trends Ecol. Evol., 25, 345, 10.1016/j.tree.2010.01.007
Potts, 2016, Safeguarding pollinators and their values to human well-being, Nature, 540, 220, 10.1038/nature20588
Pufal, 2017, Crop pollination services at the landscape scale, Curr. Opin. Insect. Sci., 21, 91, 10.1016/j.cois.2017.05.021
R Development Core Team, 2016
Rader, 2013, Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops, Glob. Change Biol., 19, 3103, 10.1111/gcb.12264
Rasmont, 2012, The Bumblebees Scarcity Syndrome: are heat waves leading to local extinctions of bumblebees (Hymenoptera: Apidae: Bombus)?, Ann. Soc. Entomol. Fr., 48, 275, 10.1080/00379271.2012.10697776
Rosenzweig, 2014, Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison, Proc. Natl. Acad. Sci., 111, 3268, 10.1073/pnas.1222463110
SAID, 2014. The US market for passion fruit. http://pdf.usaid.gov/pdf_docs/PA00KP21.pdf (accessed 28 November 2017).
Schweiger, 2008, Climate change can cause spatial mismatch of trophically interacting species, Ecology, 89, 3472, 10.1890/07-1748.1
Settele, 2016, Climate change impacts on pollination, Nat. Plants, 2, 10.1038/nplants.2016.92
Silva, 2014, 60
Siqueira, 2009, Ecology of pollination of the yellow passion fruit (Passiflora edulis Sims f. flavicarpa deg.), in the region of São Francisco Valley, Rev. Bras. Frutic., 31, 1, 10.1590/S0100-29452009000100003
Soley-Guardia, 2014, The effect of spatially marginal localities in modelling species niches and distributions, J. Biogeogr., 41, 1390, 10.1111/jbi.12297
Thuiller, 2014, biomod2: Ensemble platform for species distribution modeling
Vanbergen, 2013, Threats to an ecosystem service: pressures on pollinators, Front. Ecol. Environ., 11, 251, 10.1890/120126
Yamamoto, 2012, The role of bee diversity in pollination and fruit set of yellow passion fruit (Passiflora edulis forma flavicarpa, Passifloraceae) crop in Central Brazil, Apidologie, 43, 515, 10.1007/s13592-012-0120-6