Agonist mediated internalization of M2 mAChR is β-arrestin-dependent

Journal of Molecular Signaling - Tập 1 - Trang 1-15 - 2006
Kymry T Jones1, Maria Echeverry2, Valerie A Mosser3, Alicia Gates4, Darrell A Jackson3
1School of Biology, Georgia Institute of Technology, Atlanta, USA
2Laboratorio de Parasitologia (301), Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Columbia
3Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, USA
4Department of Anatomy and Neurobiology, Neuroscience Institute, Morehouse School of Medicine, GA, USA

Tóm tắt

Muscarinic acetylcholine receptors (mAChRs) undergo agonist-promoted internalization, but evidence suggesting that the mechanism of internalization is β-arrestin dependent has been contradictory and unclear. Previous studies using heterologous over-expression of wild type or dominant-negative forms of β-arrestins have reported that agonist-promoted internalization of M2 mAChRs is a β-arrestin- and clathrin-independent phenomenon. In order to circumvent the complications associated with the presence of endogenous β-arrestin that may have existed in these earlier studies, we examined agonist-promoted internalization of the M2 mAChR in mouse embryonic fibroblasts (MEFs) derived from β-arrestin knockout mice that lack expression of either one or both isoforms of β-arrestin (β-arrestin 1 and 2). In wild type MEF cells transiently expressing M2 mAChRs, 40% of surface M2 mAChRs underwent internalization and sorted into intracellular compartments following agonist stimulation. In contrast, M2 mAChRs failed to undergo internalization and sorting into intracellular compartments in MEF β-arrestin double knockout cells following agonist stimulation. In double knockout cells, expression of either β-arrestin 1 or 2 isoforms resulted in rescue of agonist-promoted internalization. Stimulation of M2 mAChRs led to a stable co-localization with GFP-tagged β-arrestin within endocytic structures in multiple cell lines; the compartment to which β-arrestin localized was determined to be the early endosome. Agonist-promoted internalization of M2 mAChRs was moderately rescued in MEF β-arrestin 1 and 2 double knockout cells expressing exogenous arrestin mutants that were selectively defective in interactions with clathrin (β-arrestin 2 ΔLIELD), AP-2 (β-arrestin 2-F391A), or both clathrin/AP-2. Expression of a truncated carboxy-terminal region of β-arrestin 1 (319–418) completely abrogated agonist-promoted internalization of M2 mAChRs in wild type MEF cells. In summary, this study demonstrates that agonist-promoted internalization of M2 mAChRs is β-arrestin- and clathrin-dependent, and that the receptor stably co-localizes with β-arrestin in early endosomal vesicles.

Tài liệu tham khảo

Nathanson NM: Molecular properties of the muscarinic acetylcholine receptor. Annu Rev Neurosci 1987, 10:195–236. Wess J: Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol 1996,10(1):69–99. Caulfield MP: Muscarinic receptors--characterization, coupling and function. Pharmacol Ther 1993,58(3):319–379. Burgoyne RD: Regulation of the muscarinic acetylcholine receptor: effects of phosphorylating conditions on agonist and antagonist binding. J Neurochem 1983,40(2):324–331. Moro O, Lameh J, Sadee W: Serine- and threonine-rich domain regulates internalization of muscarinic cholinergic receptors. J Biol Chem 1993,268(10):6862–6865. Pals-Rylaarsdam R, Hosey MM: Two homologous phosphorylation domains differentially contribute to desensitization and internalization of the m2 muscarinic acetylcholine receptor. J Biol Chem 1997,272(22):14152–14158. Pals-Rylaarsdam R, Xu Y, Witt-Enderby P, Benovic JL, Hosey MM: Desensitization and internalization of the m2 muscarinic acetylcholine receptor are directed by independent mechanisms. J Biol Chem 1995,270(48):29004–29011. Waugh MG, Challiss RA, Berstein G, Nahorski SR, Tobin AB: Agonist-induced desensitization and phosphorylation of m1-muscarinic receptors. Biochem J 1999, 338 ( Pt 1):175–183. Haga K, Kameyama K, Haga T: Synergistic activation of a G protein-coupled receptor kinase by G protein beta gamma subunits and mastoparan or related peptides. J Biol Chem 1994,269(17):12594–12599. Ferguson SS, Downey WE 3rd, Colapietro AM, Barak LS, Menard L, Caron MG: Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 1996,271(5247):363–366. Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SS, Caron MG, Barak LS: The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci U S A 1999,96(7):3712–3717. Shenoy SK, Lefkowitz RJ: Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem J 2003,375(Pt 3):503–515. Goodman OB Jr., Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL: Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 1996,383 (6599) :447–450. McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ, Lefkowitz RJ: Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 2000,290(5496):1574–1577. Tohgo A, Choy EW, Gesty-Palmer D, Pierce KL, Laporte S, Oakley RH, Caron MG, Lefkowitz RJ, Luttrell LM: The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J Biol Chem 2003,278(8):6258–6267. Tohgo A, Pierce KL, Choy EW, Lefkowitz RJ, Luttrell LM: beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J Biol Chem 2002,277(11):9429–9436. Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F, Kawakatsu H, Owada K, Luttrell DK, Caron MG, Lefkowitz RJ: Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 1999,283(5402):655–661. Hunton DL, Barnes WG, Kim J, Ren XR, Violin JD, Reiter E, Milligan G, Patel DD, Lefkowitz RJ: Beta-arrestin 2-dependent angiotensin II type 1A receptor-mediated pathway of chemotaxis. Mol Pharmacol 2005,67(4):1229–1236. Oakley RH, Laporte SA, Holt JA, Caron MG, Barak LS: Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 2000,275(22):17201–17210. Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG: Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J Biol Chem 1999,274(45):32248–32257. Anborgh PH, Seachrist JL, Dale LB, Ferguson SS: Receptor/beta-arrestin complex formation and the differential trafficking and resensitization of beta2-adrenergic and angiotensin II type 1A receptors. Mol Endocrinol 2000,14(12):2040–2053. Vogler O, Nolte B, Voss M, Schmidt M, Jakobs KH, van Koppen CJ: Regulation of muscarinic acetylcholine receptor sequestration and function by beta-arrestin. J Biol Chem 1999,274(18):12333–12338. Claing A, Perry SJ, Achiriloaie M, Walker JK, Albanesi JP, Lefkowitz RJ, Premont RT: Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity. Proc Natl Acad Sci U S A 2000,97(3):1119–1124. Houndolo T, Boulay PL, Claing A: G protein-coupled receptor endocytosis in ADP-ribosylation factor 6-depleted cells. J Biol Chem 2005,280(7):5598–5604. Delaney KA, Murph MM, Brown LM, Radhakrishna H: Transfer of M2 muscarinic acetylcholine receptors to clathrin-derived early endosomes following clathrin-independent endocytosis. J Biol Chem 2002,277(36):33439–33446. Kohout TA, Lin FS, Perry SJ, Conner DA, Lefkowitz RJ: beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci U S A 2001,98(4):1601–1606. Tolbert LM, Lameh J: Human muscarinic cholinergic receptor Hm1 internalizes via clathrin-coated vesicles. J Biol Chem 1996,271(29):17335–17342. Pals-Rylaarsdam R, Gurevich VV, Lee KB, Ptasienski JA, Benovic JL, Hosey MM: Internalization of the m2 muscarinic acetylcholine receptor. Arrestin-independent and -dependent pathways. J Biol Chem 1997,272(38):23682–23689. Kim YM, Benovic JL: Differential roles of arrestin-2 interaction with clathrin and adaptor protein 2 in G protein-coupled receptor trafficking. J Biol Chem 2002,277(34):30760–30768. Santini F, Gaidarov I, Keen JH: G protein-coupled receptor/arrestin3 modulation of the endocytic machinery. J Cell Biol 2002,156(4):665–676. Krupnick JG, Santini F, Gagnon AW, Keen JH, Benovic JL: Modulation of the arrestin-clathrin interaction in cells. Characterization of beta-arrestin dominant-negative mutants. J Biol Chem 1997,272(51):32507–32512. Schlador ML, Nathanson NM: Synergistic regulation of m2 muscarinic acetylcholine receptor desensitization and sequestration by G protein-coupled receptor kinase-2 and beta-arrestin-1. J Biol Chem 1997,272(30):18882–18890. Gurevich VV, Dion SB, Onorato JJ, Ptasienski J, Kim CM, Sterne-Marr R, Hosey MM, Benovic JL: Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, beta 2-adrenergic, and m2 muscarinic cholinergic receptors. J Biol Chem 1995,270(2):720–731. Lefkowitz RJ, Shenoy SK: Transduction of receptor signals by beta-arrestins. Science 2005,308(5721):512–517. DeFea KA, Zalevsky J, Thoma MS, Dery O, Mullins RD, Bunnett NW: beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 2000,148(6):1267–1281. Scott MG, Pierotti V, Storez H, Lindberg E, Thuret A, Muntaner O, Labbe-Jullie C, Pitcher JA, Marullo S: Cooperative regulation of extracellular signal-regulated kinase activation and cell shape change by filamin A and beta-arrestins. Mol Cell Biol 2006,26(9):3432–3445. Shenoy SK, Lefkowitz RJ: Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. J Biol Chem 2003,278(16):14498–14506. Roseberry AG, Hosey MM: Trafficking of M(2) muscarinic acetylcholine receptors. J Biol Chem 1999,274(47):33671–33676. Werbonat Y, Kleutges N, Jakobs KH, van Koppen CJ: Essential role of dynamin in internalization of M2 muscarinic acetylcholine and angiotensin AT1A receptors. J Biol Chem 2000,275(29):21969–21974. Claing A, Chen W, Miller WE, Vitale N, Moss J, Premont RT, Lefkowitz RJ: beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. J Biol Chem 2001,276(45):42509–42513. Scott MG, Benmerah A, Muntaner O, Marullo S: Recruitment of activated G protein-coupled receptors to pre-existing clathrin-coated pits in living cells. J Biol Chem 2002,277(5):3552–3559. Halvorsen SW, Nathanson NM: In vivo regulation of muscarinic acetylcholine receptor number and function in embryonic chick heart. J Biol Chem 1981,256(15):7941–7948.