Lão hóa nâng cao trật tự ngắn hạn hóa học và ứng suất sinh đôi trong hợp kim trung lượng CrCoNi

Science China Materials - Tập 66 - Trang 4220-4225 - 2023
Nanjun Liu1, Xintao Tian1, Qiaojun Liu1, Bin Gan2, Jun Ding1, En Ma1, Zhangjie Wang1
1State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, China
2Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing, China

Tóm tắt

Nanoindentation đã được sử dụng rộng rãi để nghiên cứu ảnh hưởng của trật tự ngắn hạn hóa học (CSRO) lên độ bền của các hợp kim trung lượng và cao (chẳng hạn như CrCoNi), đặc biệt là ứng suất hình thành của các hạt dẻo. Tuy nhiên, ngoài sự suy đoán dựa trên thống kê pop-in, cơ chế chịu trách nhiệm cho các sự kiện pop-in cực kỳ nhỏ trong quá trình nanoindentation chưa được ghi nhận thực nghiệm. Tại đây, thông qua sự thao tác tỉ mỉ, chúng tôi đã có thể lấy ra những dấu ấn pop-in rất nông với độ sâu xuống đến 7 nm để phân tích dưới kính hiển vi điện tử truyền qua. Chúng tôi phát hiện rằng sự bùng phát đầu tiên xuất phát từ sự hình thành các lỗi xếp chồng và các nanotwin. Điều này cho phép chúng tôi kết luận rằng ứng suất sinh đôi (hạt giống) đã tăng lên trong tinh thể đơn CrCoNi được định hướng/tải theo [001] với mức độ CSRO cao hơn sau quá trình lão hóa so với tinh thể đã được đồng hóa. Mức độ của CSRO có thể được theo dõi thông qua các phản xạ tán xạ bổ sung trong không gian nghịch đảo.

Từ khóa

#trật tự ngắn hạn hóa học #nanoindentation #hợp kim trung lượng #ứng suất sinh đôi #tinh thể đơn #phản xạ tán xạ

Tài liệu tham khảo

Zhang FX, Zhao S, Jin K, et al. Local structure and short-range order in a NiCoCr solid solution alloy. Phys Rev Lett, 2017, 118: 205501 Lei Z, Liu X, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563: 546–550 Ding Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature, 2019, 574: 223–227 Zhang R, Zhao S, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature, 2020, 581: 283–287 Chen X, Wang Q, Cheng Z, et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature, 2021, 592: 712–716 Zhou L, Wang Q, Wang J, et al. Atomic-scale evidence of chemical short-range order in CrCoNi medium-entropy alloy. Acta Mater, 2022, 224: 117490 Zhang Z, Sheng H, Wang Z, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat Commun, 2017, 8: 14390 Ma E. Unusual dislocation behavior in high-entropy alloys. Scripta Mater, 2020, 181: 127–133 Li QJ, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Nat Commun, 2019, 10: 3563 Liu D, Wang Q, Wang J, et al. Chemical short-range order in Fe50Mn30Co10Cr10 high-entropy alloy. Mater Today Nano, 2021, 16: 100139 Ding J, Yu Q, Asta M, et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc Natl Acad Sci USA, 2018, 115: 8919–8924 Zhang M, Yu Q, Frey C, et al. Determination of peak ordering in the CrCoNi medium-entropy alloy via nanoindentation. Acta Mater, 2022, 241: 118380 Wang L, Ding J, Chen S, et al. Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys. Nat Mater, 2023, 22: 950–957 Yin B, Yoshida S, Tsuji N, et al. Yield strength and misfit volumes of NiCoCr and implications for short-range-order. Nat Commun, 2020, 11: 2507 Zhao Y, Park JM, Jang J, et al. Bimodality of incipient plastic strength in face-centered cubic high-entropy alloys. Acta Mater, 2021, 202: 124–134 Zhu C, Lu ZP, Nieh TG. Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater, 2013, 61: 2993–3001 Ye YX, Lu ZP, Nieh TG. Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy. Scripta Mater, 2017, 130: 64–68 Wang SP, Xu J. Incipient plasticity and activation volume of dislocation nucleation for TiZrNbTaMo high-entropy alloys characterized by nanoindentation. J Mater Sci Tech, 2019, 35: 812–816 Ye YX, Ouyang B, Liu CZ, et al. Effect of interstitial oxygen and nitrogen on incipient plasticity of NbTiZrHf high-entropy alloys. Acta Mater, 2020, 199: 413–424 Gan K, Yan D, Zhu S, et al. Interstitial effects on the incipient plasticity and dislocation behavior of a metastable high-entropy alloy: Nanoindentation experiments and statistical modeling. Acta Mater, 2021, 206: 116633 Walsh F, Zhang M, Ritchie RO, et al. Extra electron reflections in concentrated alloys do not necessitate short-range order. Nat Mater, 2023, 22: 926–929 Li Y, Goyal A, Chernatynskiy A, et al. Nanoindentation of gold and gold alloys by molecular dynamics simulation. Mater Sci Eng-A, 2016, 651: 346–357 Kang S, Jung YS, Yoo BG, et al. Orientation-dependent indentation modulus and yielding in a high Mn twinning-induced plasticity steel. Mater Sci Eng-A, 2012, 532: 500–504 Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater, 2017, 128: 292–303 Blewitt TH, Coltman RR, Redman JK. Low-temperature deformation of copper single crystals. J Appl Phys, 2004, 28: 651–660 Peng X, Zhu D, Hu Z, et al. Stacking fault energy and tensile deformation behavior of high-carbon twinning-induced plasticity steels: Effect of Cu addition. Mater Des, 2013, 45: 518–523 Li L, Chen Z, Kuroiwa S, et al. Evolution of short-range order and its effects on the plastic deformation behavior of single crystals of the equiatomic Cr-Co-Ni medium-entropy alloy. Acta Mater, 2023, 243: 118537 Catoor D, Gao YF, Geng J, et al. Incipient plasticity and deformation mechanisms in single-crystal Mg during spherical nanoindentation. Acta Mater, 2013, 61: 2953–2965 Wu D, Nieh TG. Incipient plasticity and dislocation nucleation in body-centered cubic chromium. Mater Sci Eng-A, 2014, 609: 110–115 Alabd Alhafez I, Ruestes CJ, Zhao S, et al. Dislocation structures below a nano-indent of the CoCrNi medium-entropy alloy. Mater Lett, 2021, 283: 128821 Xiao HZ, Daykin AC. Extra diffractions caused by stacking faults in cubic crystals. Ultramicroscopy, 1994, 53: 325–331 Jin R, Cao YW, Mirkin CA, et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science, 2001, 294: 1901–1903 Reyes-Gasga J, Gómez-Rodríguez A, Gao X, et al. On the interpretation of the forbidden spots observed in the electron diffraction patterns of flat Au triangular nanoparticles. Ultramicroscopy, 2008, 108: 929–936 Johnson KL. Contact Mechanics. Cambridge: Cambridge University Press, 1985 Fischer-Cripps AC. Nanoindentation. New York: Springer, 2011 Wu Z, Bei H, Pharr GM, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater, 2014, 81: 428–441 Yan J, Yin S, Asta M, et al. Anomalous size effect on yield strength enabled by compositional heterogeneity in high-entropy alloy nanoparticles. Nat Commun, 2022, 13: 2789 Jian WR, Xie Z, Xu S, et al. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi. Acta Mater, 2020, 199: 352–369