Aging characteristics of glass fiber‐reinforced polyamide in hot water and air

Polymer Composites - Tập 39 Số 4 - Trang 997-1005 - 2018
Klaus J. Geretschläger1, Gernot M. Wallner1
1Johannes Kepler University Linz, Institute of Polymeric Materials and Testing, Altenberger Strasse 69, Linz 4040, Austria

Tóm tắt

This article focuses on the accelerated aging behavior of a glass fiber‐reinforced and heat stabilized polyamide grade. Accelerated aging of injection molded specimens was achieved by hot air exposure (HAE) and pressure cooker testing (PCT) at elevated temperatures. For both aging routines, characteristic aging indicators were found. For hot air exposure, the carbonyl index obtained from infrared spectra revealed superficial thermo oxidation. For pressure cooker testing, the development of a regular crack pattern and successive surface roughening were observed by light microscopy and laser confocal microscopy. This was accompanied by a significant reduction in molar mass assessed by viscometry. In addition, progressing degradation of mechanical performance was ascertained by tensile testing experiments. At the onset of material cracking, the molar mass was about 25% of the initial value. POLYM. COMPOS., 39:997–1005, 2018. © 2016 Society of Plastics Engineers

Từ khóa


Tài liệu tham khảo

10.1002/pc.20312

M.Köhl K.‐A.Weiß S.Saile P.Ohnewein D.Preiss S.Brunold B.Röder Y.Klinger A.Müller T.Lüftinger J.Rekstad M.Meir K.Schnetzinger G.M.Wallner andE.Hochreiter SCOOP ‐ Novel Materials Ideas and Designs for Solar Collectors Made of Polymers ‐ Newsletter 1. Available from:http://www.eu-scoop.org/downloads.htm(accessed on September 22 2015).

10.1016/j.compositesb.2013.11.001

10.1016/j.polymdegradstab.2009.04.009

A.S.Maxwell W.R.Broughton G.Dean andG.D.Sims Review of accelerated aging methods and lifetime prediction techniques for polymeric materials NPL Report DEPC MPR 016 (2005).

10.1016/j.polymdegradstab.2012.11.002

10.1016/j.polymdegradstab.2013.04.012

10.1002/app.28647

10.1016/j.polymdegradstab.2004.11.020

10.1016/j.polymdegradstab.2010.06.018

10.1016/j.polymdegradstab.2007.08.007

10.1021/i300006a006

K.J.Geretschläger G.M.Wallner andT.Ramschak Aging behavior and lifetime modelling of polyamide materials for integrated collector storeages Journal of Solar Energy Engineering: Including Wind Energy and Building Energy Conservation(submitted for publication).

10.1016/j.polymdegradstab.2010.02.030

Brandrup J., 1999, Polymer Handbook

10.1122/1.549633

Mechanische und thermische Eigenschaften Prüfnormen: EN ISO 527 Beuth Berlin [u.a.] (2004).

Hässler R., 2007, Thermische Eigenschaften Polymerer Werkstoffe: DMA – DSC – TGA – TMA – µTA; Stoffsammlung Thermoanalytischer Messungen

T.Mettler Thermal Analysis Application Handbook: Thermoplast Collected Applications Mettler-Toledo AG Analytical Switzerland (2008). Available from:http://us.mt.com/us/en/home/applications/Application_Browse_Laboratory_Analytics/Application_Browse_thermal_analysis/TA_Appl_Handb/Thermoplastics.html.

10.3390/ma6083494

10.1016/0008-6223(95)00117-V

Cho L.L., 2007, Forensic Sci. J., 6, 55

Smith E., 2005, Modern Raman Spectroscopy: A Practical Approach

Y.Horiba Jobin Raman Data and Analysis: Raman Spectroscopy for Analysis and Monitoring HORIBA Jobin Yvon GmbH Germany (2015). Available from:http://www.horiba.com/de/scientific/products/raman-spectroscopy/raman-academy/.

Verleye G., 2001, Easy Identification of Plastics and Rubbers

10.1002/0470011149