Aging and age‐related diseases: from mechanisms to therapeutic strategies

Biogerontology - Tập 22 Số 2 - Trang 165-187 - 2021
Zhe Li1, Zhenkun Zhang1, Yueping Ren1, Yingying Wang1, Jiarui Fang1, Yue Han2, Shanshan Ma1, Fangxia Guan3
1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
2Stem Cell Research Center, Henan Provincial People’s Hospital, Zhengzhou, 450003, Henan, China
3Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acosta JC et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018. https://doi.org/10.1016/j.cell.2008.03.038

Acosta JC et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15:978–990. https://doi.org/10.1038/ncb2784

Algire C, Amrein L, Zakikhani M, Panasci L, Pollak M (2010) Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase . Endocr Relat Cancer 17:351–360. https://doi.org/10.1677/erc-09-0252

Algire C et al (2012) Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev Res 5:536–543. https://doi.org/10.1158/1940-6207.capr-11-0536

Anisimov VN et al (2010) Rapamycin extends maximal lifespan in cancer-prone mice. Am J Pathol 176:2092–2097. https://doi.org/10.2353/ajpath.2010.091050

Anisimov VN et al (2011) Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle 10:4230–4236. https://doi.org/10.4161/cc.10.24.18486

Apple DM, Solano-Fonseca R, Kokovay E (2017) Neurogenesis in the aging brain. Biochem Pharmacol 141:77–85. https://doi.org/10.1016/j.bcp.2017.06.116

Aroda VR et al (2016) Long-term metformin use and vitamin B12 deficiency in the diabetes prevention program outcomes study. J Clin Endocrinol Metab 101:1754–1761. https://doi.org/10.1210/jc.2015-3754

Arriola Apelo SI, Lamming DW (2016) Rapamycin: an inhibiTOR of aging emerges from the soil of Easter Island. J Geront Ser A 71:841–849. https://doi.org/10.1093/gerona/glw090

Baker DJ et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236. https://doi.org/10.1038/nature10600

Baker DJ et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189. https://doi.org/10.1038/nature16932

Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA (2016) Metformin as a tool to target aging. Cell Metab 23:1060–1065. https://doi.org/10.1016/j.cmet.2016.05.011

Basisty N, Meyer JG, Schilling B (2018) Protein turnover in aging longevity. Proteomics 18:e1700108. https://doi.org/10.1002/pmic.201700108

Batandier C, Guigas B, Detaille D, El-Mir MY, Fontaine E, Rigoulet M, Leverve XM (2006) The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. J Bioenerg Biomembr 38:33–42. https://doi.org/10.1007/s10863-006-9003-8

Baur JA et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342. https://doi.org/10.1038/nature05354

Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer: a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116. https://doi.org/10.1038/nrc1799

Bitto A et al (2016) Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. eLife. https://doi.org/10.7554/eLife.16351

Broskey NT, Marlatt KL, Most J, Erickson ML, Irving BA, Redman LM (2019) The panacea of human aging: calorie restriction versus exercise. Exer Sport Sci Rev 47:169–175. https://doi.org/10.1249/jes.0000000000000193

Bullone M, Lavoie JP (2017) The contribution of oxidative stress and inflamm-aging in human and equine asthma. Int J Mol Sci. https://doi.org/10.3390/ijms18122612

Buzzai M et al (2007) Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 67:6745–6752. https://doi.org/10.1158/0008-5472.can-06-4447

Cabreiro F et al (2013) Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153:228–239. https://doi.org/10.1016/j.cell.2013.02.035

Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A (2019) Cellular senescence: aging, cancer, and injury. Physiol Rev 99:1047–1078. https://doi.org/10.1152/physrev.00020.2018

Cameron AR et al (2016) Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res 119:652–665. https://doi.org/10.1161/circresaha.116.308445

Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E (2019) From discoveries in ageing research to therapeutics for healthy ageing. Nature 571:183–192. https://doi.org/10.1038/s41586-019-1365-2

Cao L, Li W, Kim S, Brodie SG, Deng CX (2003) Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev 17:201–213. https://doi.org/10.1101/gad.1050003

Cao W, Dou Y, Li A (2018) Resveratrol boosts cognitive function by targeting SIRT1. Neurochem Res 43:1705–1713. https://doi.org/10.1007/s11064-018-2586-8

Capell BC, Collins FS, Nabel EG (2007) Mechanisms of cardiovascular disease in accelerated aging syndromes. Circ Res 101:13–26. https://doi.org/10.1161/circresaha.107.153692

Caramés B, Olmer M, Kiosses WB, Lotz MK (2015) The relationship of autophagy defects to cartilage damage during joint aging in a mouse model. Arthrit Rheumatol 67:1568–1576. https://doi.org/10.1002/art.39073

Carosi JM, Sargeant TJ (2019) Rapamycin and Alzheimer disease: a double-edged sword? Autophagy 15:1460–1462. https://doi.org/10.1080/15548627.2019.1615823

Chang J et al (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22:78–83. https://doi.org/10.1038/nm.4010

Chen C, Liu Y, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2:75. https://doi.org/10.1126/scisignal.2000559

Chen D, Kerr C (2019) The epigenetics of stem cell aging comes of age. Trends Cell Biol 29:563–568. https://doi.org/10.1016/j.tcb.2019.03.006

Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM (2016) Senescent intimal foam cells are deleterious at all stages of atherosclerosis . Science 354:472–477. https://doi.org/10.1126/science.aaf6659

Cho K et al (2015) Antihyperglycemic mechanism of metformin occurs via the AMPK/LXRα/POMC pathway. Sci Rep 5:8145. https://doi.org/10.1038/srep08145

Chung HY et al (2011) Molecular inflammation as an underlying mechanism of the aging process and age-related diseases. J Dent Res 90:830–840. https://doi.org/10.1177/0022034510387794

Chung CL et al (2019) Topical rapamycin reduces markers of senescence and aging in human skin: an exploratory, prospective, randomized trial. GeroScience 41:861–869. https://doi.org/10.1007/s11357-019-00113-y

Col NF, Ochs L, Springmann V, Aragaki AK, Chlebowski RT (2012) Metformin and breast cancer risk: a meta-analysis and critical literature review. Breast Cancer Res Treatm 135:639–646. https://doi.org/10.1007/s10549-012-2170-x

Comas M et al (2012) New nanoformulation of rapamycin Rapatar extends lifespan in homozygous p53-/- mice by delaying carcinogenesis. Aging 4:715–722. https://doi.org/10.18632/aging.100496

Conboy IM, Rando TA (2012) Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches. Cell Cycle 11:2260–2267. https://doi.org/10.4161/cc.20437

Coppé JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Ann Rev Pathol 5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144

Cox KH, Pipingas A, Scholey AB (2015) Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J Psychopharmacol 29:642–651. https://doi.org/10.1177/0269881114552744

da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T (2016) A synopsis on aging-theories, mechanisms and future prospects. Ageing Res Rev 29:90–112. https://doi.org/10.1016/j.arr.2016.06.005

Da Silva-Álvarez S, Guerra-Varela J, Sobrido-Cameán D, Quelle A, Barreiro-Iglesias A, Sánchez L, Collado M (2020) Cell senescence contributes to tissue regeneration in zebrafish. Aging Cell 19:e13052. https://doi.org/10.1111/acel.13052

de Jesus BB, Vera E, Schneeberger K, Tejera AM, Ayuso E, Bosch F, Blasco MA (2012) Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med 4:691–704. https://doi.org/10.1002/emmm.201200245

de Magalhães JP, Stevens M, Thornton D (2017) The business of anti-aging. Sci Trends Biotechnol 35:1062–1073. https://doi.org/10.1016/j.tibtech.2017.07.004

Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, Gandini S (2010) Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prevent Res 3:1451–1461. https://doi.org/10.1158/1940-6207.capr-10-0157

Demaria M et al (2017) Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov 7:165–176. https://doi.org/10.1158/2159-8290.cd-16-0241

Di Daniele N et al (2017) Impact of Mediterranean diet on metabolic syndrome cancer longevity. Oncotarget 8:8947–8979. https://doi.org/10.18632/oncotarget.13553

Diamanti-Kandarakis E et al (2017) Mechanisms in endocrinology: aging and anti-aging: a combo-endocrinology overview. Eur J Endocrinol 176:R283-Rr308. https://doi.org/10.1530/eje-16-1061

Diller ML, Kudchadkar RR, Delman KA, Lawson DH, Ford ML (2016) Balancing inflammation: the link between Th17 and regulatory T cells. Mediat Inflamm 2016:6309219. https://doi.org/10.1155/2016/6309219

Doe C et al (2010) Expression of the T helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD. Chest 138:1140–1147. https://doi.org/10.1378/chest.09-3058

Donato AJ, Machin DR, Lesniewski LA (2018) Mechanisms of dysfunction in the aging vasculature and role in age-related. Dis Circ Res 123:825–848. https://doi.org/10.1161/circresaha.118.312563

Donev R, Kolev M, Millet B, Thome J (2009) Neuronal death in Alzheimer’s disease and therapeutic opportunities. J Cell Mol Med 13:4329–4348. https://doi.org/10.1111/j.1582-4934.2009.00889.x

Fabricius K, Jacobsen JS, Pakkenberg B (2013) Effect of age on neocortical brain cells in 90+ year old human females: a cell counting study. Neurobiol Aging 34:91–99. https://doi.org/10.1016/j.neurobiolaging.2012.06.009

Faget DV, Ren Q, Stewart SA (2019) Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer 19:439–453. https://doi.org/10.1038/s41568-019-0156-2

Fan X, Wheatley EG, Villeda SA (2017) Mechanisms of hippocampal aging and the potential for rejuvenation. Annu Rev Neurosci 40:251–272. https://doi.org/10.1146/annurev-neuro-072116-031357

Farr SA, Roesler E, Niehoff ML, Roby DA, McKee A, Morley JE (2019) Metformin improves learning and memory in the SAMP8 mouse model of Alzheimer’s disease. J Alzheimer’s Dis 68:1699–1710. https://doi.org/10.3233/jad-181240

Farzaei MH, Rahimi R, Nikfar S, Abdollahi M (2018) Effect of resveratrol on cognitive and memory performance and mood: a meta-analysis of 225 patients. Pharmacol Res 128:338–344. https://doi.org/10.1016/j.phrs.2017.08.009

Favalli EG (2020) Understanding the role of interleukin-6 (IL-6) in the joint and beyond: a comprehensive review of IL-6 inhibition for the management of rheumatoid. Arthritis Rheumatol Therapy 7:473–516. https://doi.org/10.1007/s40744-020-00219-2

Foo MXR, Ong PF, Dreesen O (2019) Premature aging syndromes: from patients to mechanism. J Dermatol Sci 96:58–65. https://doi.org/10.1016/j.jdermsci.2019.10.003

Fraga MF et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400. https://doi.org/10.1038/ng1531

Gaffney CJ, Pollard A, Barratt TF, Constantin-Teodosiu D, Greenhaff PL, Szewczyk NJ (2018) Greater loss of mitochondrial function with ageing is associated with earlier onset of sarcopenia in C. elegans. Aging 10:3382–3396. https://doi.org/10.18632/aging.101654

Gerhart-Hines Z et al (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 26:1913–1923. https://doi.org/10.1038/sj.emboj.7601633

Gillum MP et al (2011) SirT1 regulates adipose tissue inflammation. Diabetes 60:3235–3245. https://doi.org/10.2337/db11-0616

Gliemann L et al (2013) Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. J Physiol 591:5047–5059. https://doi.org/10.1113/jphysiol.2013.258061

Gocmez SS, Gacar N, Utkan T, Gacar G, Scarpace PJ, Tumer N (2016) Protective effects of resveratrol on aging-induced cognitive impairment in rats. Neurobiol Learn Mem 131:131–136. https://doi.org/10.1016/j.nlm.2016.03.022

Goodell MA, Rando TA (2015) Stem cells and healthy aging. Science 350:1199–1204. https://doi.org/10.1126/science.aab3388

Gräff J et al (2012) An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483:222–226. https://doi.org/10.1038/nature10849

Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging . Science 333:1109–1112. https://doi.org/10.1126/science.1201940

Grote C, Reinhardt D, Zhang M, Wang J (2019) Regulatory mechanisms and clinical manifestations of musculoskeletal aging. J Orthopaed Res 37:1475–1488. https://doi.org/10.1002/jor.24292

Gustafson CE, Kim C, Weyand CM, Goronzy JJ (2020) Influence of immune aging on vaccine responses. J Allergy Clin Immunol 145:1309–1321. https://doi.org/10.1016/j.jaci.2020.03.017

Gwinn DM et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226. https://doi.org/10.1016/j.molcel.2008.03.003

Harman D (1965) The free radical theory of aging: effect of age on serum copper levels. J Gerontol 20:151–153. https://doi.org/10.1093/geronj/20.2.151

Harrison DE et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395. https://doi.org/10.1038/nature08221

Harry GJ (2013) Microglia during development and aging. Pharmacol Ther 139:313–326. https://doi.org/10.1016/j.pharmthera.2013.04.013

Hartley AV, Martin M, Lu T (2017) Aging: cancer-an unlikely couple. Aging 9:1949–1950. https://doi.org/10.18632/aging.101295

Hasty P et al (2014) eRapa restores a normal life span in a FAP mouse model. Cancer Prevent Res 7:169–178. https://doi.org/10.1158/1940-6207.capr-13-0299

Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621. https://doi.org/10.1016/0014-4827(61)90192-6

Heidenreich PA et al (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American. Heart Assoc Circ 123:933–944. https://doi.org/10.1161/CIR.0b013e31820a55f5

Hekimi S, Lapointe J, Wen Y (2011) Taking a “good” look at free radicals in the aging process. Trends Cell Biol 21:569–576. https://doi.org/10.1016/j.tcb.2011.06.008

Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M (2017) Unmasking transcriptional heterogeneity in senescent cells. Curr Biol 27:2652-2660.e2654. https://doi.org/10.1016/j.cub.2017.07.033

Hernandez-Segura A, Nehme J, Demaria M (2018) Hallmarks of cellular senescence. Trends Cell Biol 28:436–453. https://doi.org/10.1016/j.tcb.2018.02.001

Herrmann M, Pusceddu I, März W, Herrmann W (2018) Telomere biology and age-related diseases. Clin Chem Lab Med 56:1210–1222. https://doi.org/10.1515/cclm-2017-0870

Hickson LJ et al (2019) Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 47:446–456. https://doi.org/10.1016/j.ebiom.2019.08.069

Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009) Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69:7507–7511. https://doi.org/10.1158/0008-5472.can-09-2994

Hood DA, Memme JM, Oliveira AN, Triolo M (2019) Maintenance of skeletal muscle mitochondria in health. Exer Aging Annu Rev Physiol 81:19–41. https://doi.org/10.1146/annurev-physiol-020518-114310

Horrillo D et al (2011) Age-associated development of inflammation in Wistar rats: effects of caloric restriction. Arch Physiol Biochem 117:140–150. https://doi.org/10.3109/13813455.2011.577435

Hosono K et al (2010) Metformin suppresses azoxymethane-induced colorectal aberrant crypt foci by activating AMP-activated protein kinase. Mol Carcinogen 49:662–671. https://doi.org/10.1002/mc.20637

Howitz KT et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196. https://doi.org/10.1038/nature01960

Hwangbo DS, Lee HY, Abozaid LS, Min KJ (2020) Mechanisms of lifespan regulation by calorie restriction and intermittent fasting in model organisms. Nutrients.  https://doi.org/10.3390/nu12041194

Imai S, Guarente L (2010) Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacological Sci 31:212–220. https://doi.org/10.1016/j.tips.2010.02.003

Janczura KJ et al (2018) Inhibition of HDAC3 reverses Alzheimer’s disease-related pathologies in vitro and in the 3xTg-AD mouse model. Proc  Natl Acad Sci USA 115:E11148–E11157. https://doi.org/10.1073/pnas.1805436115

Jankovic J, Kapadia AS (2001) Functional decline in Parkinson disease. Arch Neurol 58:1611–1615. https://doi.org/10.1001/archneur.58.10.1611

Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493:338–345. https://doi.org/10.1038/nature11861

Justice JN et al (2019) Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label pilot study. EBioMedicine 40:554–563. https://doi.org/10.1016/j.ebiom.2018.12.052

Kalra N, Roy P, Prasad S, Shukla Y (2008) RETRACTED: Resveratrol induces apoptosis involving mitochondrial pathways in mouse skin tumorigenesis. Life Sci 82:348–358. https://doi.org/10.1016/j.lfs.2007.11.006

Kanaan NM, Kordower JH, Collier TJ (2007) Age-related accumulation of Marinesco bodies and lipofuscin in rhesus monkey midbrain dopamine neurons: relevance to selective neuronal vulnerability. J Comp Neurol 502:683–700. https://doi.org/10.1002/cne.21333

Kanaan NM, Kordower JH, Collier TJ (2008) Age and region-specific responses of microglia, but not astrocytes, suggest a role in selective vulnerability of dopamine neurons after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure in monkeys. Glia 56:1199–1214. https://doi.org/10.1002/glia.20690

Kane AE, Sinclair DA (2019) Epigenetic changes during aging and their reprogramming potential. Crit Rev Biochem Mol Biol 54:61–83. https://doi.org/10.1080/10409238.2019.1570075

Kantarjian HM et al (2012) Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol 30:2670–2677. https://doi.org/10.1200/jco.2011.38.9429

Kapahi P, Kaeberlein M, Hansen M (2017) Dietary restriction and lifespan: lessons from invertebrate models. Ageing Res Rev 39:3–14. https://doi.org/10.1016/j.arr.2016.12.005

Kauppila TES, Kauppila JHK, Larsson NG (2017) Mammalian mitochondria and aging. An update. Cell Metab 25:57–71. https://doi.org/10.1016/j.cmet.2016.09.017

Kauppila TES et al (2018) Mutations of mitochondrial DNA are not major contributors to aging of fruit flies. Proc Natl Acad Sci USA 115:E9620–E9629. https://doi.org/10.1073/pnas.1721683115

Kaushik S, Cuervo AM (2015) Proteostasis and aging. Nat Med 21:1406–1415. https://doi.org/10.1038/nm.4001

Kawahara TL et al (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136:62–74. https://doi.org/10.1016/j.cell.2008.10.052

Keyes BE, Fuchs E (2018) Stem cells: aging and transcriptional fingerprints. J Cell Biol 217:79–92. https://doi.org/10.1083/jcb.201708099

Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, Rumbaugh G (2010) Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 35:870–880. https://doi.org/10.1038/npp.2009.197

Kim EC, Kim JR (2019) Senotherapeutics: emerging strategy for healthy aging and age-related disease. BMB Rep 52:47–55. https://doi.org/10.5483/BMBRep.2019.52.1.293

Klaips CL, Jayaraj GG, Hartl FU (2018) Pathways of cellular proteostasis in aging and disease. J Cell Biol 217:51–63. https://doi.org/10.1083/jcb.201709072

Kozhemyakina E et al (2015) Identification of a Prg4-expressing articular cartilage progenitor cell population in mice. Arthrit Rheumatol 67:1261–1273. https://doi.org/10.1002/art.39030

Kubben N, Misteli T (2017) Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol 18:595–609. https://doi.org/10.1038/nrm.2017.68

Kurz DJ et al (2006) Degenerative aortic valve stenosis, but not coronary disease, is associated with shorter telomere length in the elderly. Arterioscler Thromb Vasc Biol 26:e114-117. https://doi.org/10.1161/01.atv.0000222961.24912.69

la Porte C, Voduc N, Zhang G, Seguin I, Tardiff D, Singhal N, Cameron DW (2010) Steady-state pharmacokinetics and tolerability of trans-resveratrol 2000 mg twice daily with food, quercetin and alcohol (ethanol) in healthy human subjects. Clin Pharmacokinet 49:449–454. https://doi.org/10.2165/11531820-000000000-00000

Lähteenvuo J, Rosenzweig A (2012) Effects of aging on angiogenesis. Circ Res 110:1252–1264. https://doi.org/10.1161/circresaha.111.246116

Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation 107:346–354. https://doi.org/10.1161/01.cir.0000048893.62841.f7

Langan RC, Goodbred AJ (2017) Vitamin B12 deficiency: recognition and management. Am Fam Phys 96:384–389

Lavasani M et al (2012) Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model. Nat Commun 3:608. https://doi.org/10.1038/ncomms1611

Le Bourg E, Redman LM (2018) Do-it-yourself calorie restriction: the risks of simplistically translating findings in animal models to humans. BioEssays 40:e1800087. https://doi.org/10.1002/bies.201800087

Leong I (2018) Sustained caloric restriction in health. Nat Rev Endocrinol 14:322. https://doi.org/10.1038/s41574-018-0008-2

Li Y, Seto E (2016) HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harbor Perspect Med.  https://doi.org/10.1101/cshperspect.a026831

Li Y, Tollefsbol TO (2010) Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem 17:2141–2151. https://doi.org/10.2174/092986710791299966

Li X, Li T, Liu Z, Gou S, Wang C (2017) The effect of metformin on survival of patients with pancreatic cancer: a meta-analysis. Sci Rep 7:5825. https://doi.org/10.1038/s41598-017-06207-x

Li YR, Li S, Lin CC (2018) Effect of resveratrol and pterostilbene on aging and longevity . BioFactors 44:69–82. https://doi.org/10.1002/biof.1400

Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46:957–967. https://doi.org/10.1016/j.immuni.2017.06.006

Lin CL et al (2019) HDAC1 and HDAC2 double knockout triggers cell apoptosis in advanced thyroid cancer. Int J Mol Sci. https://doi.org/10.3390/ijms20020454

Liu B, Fan Z, Edgerton SM, Yang X, Lind SE, Thor AD (2011) Potent anti-proliferative effects of metformin on trastuzumab-resistant breast cancer cells via inhibition of erbB2/IGF-1 receptor interactions. Cell Cycle 10:2959–2966. https://doi.org/10.4161/cc.10.17.16359

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

Lorenzini A (2014) How much should we weigh for a long and healthy life span? The need to reconcile caloric restriction versus longevity with body mass index versus mortality data . Front Endocrinol 5:121. https://doi.org/10.3389/fendo.2014.00121

Lu M, Su C, Qiao C, Bian Y, Ding J, Hu G (2016) Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of Parkinson’s disease via autophagy and mitochondrial ROS clearance. Int J Neuropsychopharmacol. https://doi.org/10.1093/ijnp/pyw047

Lublóy Á (2020) Medical crowdfunding in a healthcare system with universal coverage: an exploratory study. BMC Public Health 20:1672. https://doi.org/10.1186/s12889-020-09693-3

Ma S et al (2019) Histone deacetylases inhibitor MS-275 suppresses human esophageal squamous cell carcinoma cell growth and progression via the PI3K/Akt/mTOR pathway. J Cell Physiol 234:22400–22410. https://doi.org/10.1002/jcp.28805

Maierhofer A et al (2019) Epigenetic signatures of Werner syndrome occur early in life and are distinct from normal epigenetic aging processes. Aging Cell 18:e12995. https://doi.org/10.1111/acel.12995

Marathe PH, Gao HX, Close KL (2017) American Diabetes Association Standards of Medical Care in Diabetes 2017. J Diabet 9:320–324. https://doi.org/10.1111/1753-0407.12524

Matheu A et al (2007) Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448:375–379. https://doi.org/10.1038/nature05949

Mathew R, Pal Bhadra M, Bhadra U (2017) Insulin/insulin-like growth factor-1 signalling (IIS) based regulation of lifespan across species. Biogerontology 18:35–53. https://doi.org/10.1007/s10522-016-9670-8

McCormack FX et al (2011) Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med 364:1595–1606. https://doi.org/10.1056/NEJMoa1100391

McCreight LJ et al (2018) Pharmacokinetics of metformin in patients with gastrointestinal intolerance. Diabet Obes Metab 20:1593–1601. https://doi.org/10.1111/dom.13264

McGrath C et al (2020) Exercise degrades bone in caloric restriction, despite suppression of marrow adipose tissue (MAT). J Bone Miner Res 35:106–115. https://doi.org/10.1002/jbmr.3872

Mensà E, Latini S, Ramini D, Storci G, Bonafè M, Olivieri F (2019) The telomere world and aging: analytical challenges and future perspectives. Ageing Res Rev 50:27–42. https://doi.org/10.1016/j.arr.2019.01.004

Meydani SN et al (2016) Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans. Aging 8:1416–1431. https://doi.org/10.18632/aging.100994

Moiseeva O et al (2013) Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 12:489–498. https://doi.org/10.1111/acel.12075

Morigi M, Perico L, Benigni A (2018) Sirtuins in renal health and disease. J Am Soc Nephrol 29:1799–1809. https://doi.org/10.1681/asn.2017111218

Most J, Gilmore LA, Smith SR, Han H, Ravussin E, Redman LM (2018) Significant improvement in cardiometabolic health in healthy nonobese individuals during caloric restriction-induced weight loss and weight loss maintenance. Am J Physiol Endocrinology Metab 314:E396–E405. https://doi.org/10.1152/ajpendo.00261.2017

Musci RV et al (2020) The Dunkin Hartley Guinea pig is a model of primary osteoarthritis that also exhibits early onset myofiber remodeling that resembles human musculoskeletal aging. Front Physiol 11:571372. https://doi.org/10.3389/fphys.2020.571372

Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, Orr ME (2018) Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 17:e12840. https://doi.org/10.1111/acel.12840

Nair V, Sreevalsan S, Basha R, Abdelrahim M, Abudayyeh A, Rodrigues Hoffman A, Safe S (2014) Mechanism of metformin-dependent inhibition of mammalian target of rapamycin (mTOR) and Ras activity in pancreatic cancer: role of specificity protein (Sp) transcription factors. J Biol Chem 289:27692–27701. https://doi.org/10.1074/jbc.M114.592576

Neff F et al (2013) Rapamycin extends murine lifespan but has limited effects on aging. J Clin Investig 123:3272–3291. https://doi.org/10.1172/jci67674

Nelson G, Kucheryavenko O, Wordsworth J, von Zglinicki T (2018) The senescent bystander effect is caused by ROS-activated NF-κB signalling. Mech Ageing Dev 170:30–36. https://doi.org/10.1016/j.mad.2017.08.005

Ng TP, Feng L, Yap KB, Lee TS, Tan CH, Winblad B (2014) Long-term metformin usage and cognitive function among older adults with diabetes. J Alzheimer’s Dis 41:61–68. https://doi.org/10.3233/jad-131901

Niedernhofer LJ, Robbins PD (2018) Senotherapeutics for healthy ageing. Nat Rev Drug Discov 17:377. https://doi.org/10.1038/nrd.2018.44

Njie EG, Boelen E, Stassen FR, Steinbusch HW, Borchelt DR, Streit WJ (2012) Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol Aging 33:195.e191–112. https://doi.org/10.1016/j.neurobiolaging.2010.05.008

Ogrodnik M et al (2019) Obesity-induced cellular senescence drives anxiety and impairs. Neurogen Cell Metab 29:1233. https://doi.org/10.1016/j.cmet.2019.01.013

Olah M et al (2018) A transcriptomic atlas of aged human microglia. Nat Commun 9:539. https://doi.org/10.1038/s41467-018-02926-5

Osorio FG et al (2012) Nuclear lamina defects cause ATM-dependent NF-κB activation and link accelerated aging to a systemic inflammatory response. Genes Dev 26:2311–2324. https://doi.org/10.1101/gad.197954.112

Ou Z et al (2018) Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun 69:351–363. https://doi.org/10.1016/j.bbi.2017.12.009

Palmer SC et al (2016) Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes: a meta-analysis. Jama 316:313–324. https://doi.org/10.1001/jama.2016.9400

Paneni F, Diaz Cañestro C, Libby P, Lüscher TF, Camici GG (2017) The aging cardiovascular system: understanding it at the cellular and clinical levels. J Am Coll Cardiol 69:1952–1967. https://doi.org/10.1016/j.jacc.2017.01.064

Park DW, Kim JS, Chin BR, Baek SH (2012) Resveratrol inhibits inflammation induced by heat-killed Listeria monocytogenes. J Med Food 15:788–794. https://doi.org/10.1089/jmf.2012.2194

Patil SP, Jain PD, Ghumatkar PJ, Tambe R, Sathaye S (2014) Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. Neuroscience 277:747–754. https://doi.org/10.1016/j.neuroscience.2014.07.046

Patrick M, Weng NP (2019) Expression and regulation of telomerase in human T cell differentiation, activation, aging and diseases. Cell Immunol 345:103989. https://doi.org/10.1016/j.cellimm.2019.103989

Pereira B, Xu XN, Akbar AN (2020) Targeting inflammation and immunosenescence to improve vaccine responses in the elderly. Front Immunol 11:583019. https://doi.org/10.3389/fimmu.2020.583019

Pérez-Revuelta BI, Hettich MM, Ciociaro A, Rotermund C, Kahle PJ, Krauss S, Di Monte DA (2014) Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation. Cell Death Dis 5:e1209. https://doi.org/10.1038/cddis.2014.175

Philipot D et al (2014) p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. Arthritis Res Therapy 16:R58. https://doi.org/10.1186/ar4494

Picca A, Pesce V, Lezza AMS (2017) Does eating less make you live longer and better? An update on calorie restriction. Clin Interv Aging 12:1887–1902. https://doi.org/10.2147/cia.s126458

Pietrobon AJ, Teixeira FME, Sato MN (2020) Immunosenescence and inflammaging: risk factors of severe COVID-19 in older people. Front Immunol 11:579220. https://doi.org/10.3389/fimmu.2020.579220

Pifferi F, Aujard F (2019) Caloric restriction, longevity and aging: recent contributions from human and non-human primate studies. Prog Neuro-Psychopharmacol Biol Psychiatry 95:109702. https://doi.org/10.1016/j.pnpbp.2019.109702

Pifferi F, Aujard F (2019) Caloric restriction, longevity and aging: Recent contributions from human and non-human primate studies. Prog Neuro-Psychopharmacol Biol Psychiatry 95:109702. https://doi.org/10.1016/j.pnpbp.2019.109702

Popat R et al (2013) A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br J Haematol 160:714–717. https://doi.org/10.1111/bjh.12154

Price NL et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metabol 15:675–690. https://doi.org/10.1016/j.cmet.2012.04.003

Pringsheim T, Jette N, Frolkis A, Steeves TD (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis. J Movement Disord Soc 29:1583–1590. https://doi.org/10.1002/mds.25945

Pryor R, Cabreiro F (2015) Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem J 471:307–322. https://doi.org/10.1042/bj20150497

Raphael I, Joern RR, Forsthuber TG (2020) Memory CD4(+) T cells in immunity and autoimmune diseases. Cells 7:8. https://doi.org/10.3390/cells9030531

Rattan SI (2014) Aging is not a disease: implications for intervention. Aging Dis 5:196–202. https://doi.org/10.14336/ad.2014.0500196

Ravi V et al (2019) SIRT6 transcriptionally regulates global protein synthesis through transcription factor Sp1 independent of its deacetylase activity. Nucleic Acids Res 47:9115–9131. https://doi.org/10.1093/nar/gkz648

Ray D, Yung R (2018) Immune senescence, epigenetics and autoimmunity. Clin Immunol 196:59–63. https://doi.org/10.1016/j.clim.2018.04.002

Redman LM, Smith SR, Burton JH, Martin CK, Il’yasova D, Ravussin E (2018) Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Aging Cell Metab 27:805-815.e804. https://doi.org/10.1016/j.cmet.2018.02.019

Ritschka B et al (2017) The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev 31:172–183. https://doi.org/10.1101/gad.290635.116

Rossman MJ et al (2018) Chronic supplementation with a mitochondrial antioxidant (mitoq) improves vascular function in healthy older adults. Hypertension 71:1056–1063. https://doi.org/10.1161/hypertensionaha.117.10787

Rufer N et al (1999) Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 190:157–167. https://doi.org/10.1084/jem.190.2.157

Sadighi Akha AA (2018) Aging and the immune system: an overview. J Immunol Methods 463:21–26. https://doi.org/10.1016/j.jim.2018.08.005

Salminen A, Kaarniranta K, Kauppinen A (2012) Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging 4:166–175. https://doi.org/10.18632/aging.100444

Salminen A, Kauppinen A, Kaarniranta K (2017) FGF21 activates AMPK signaling: impact on metabolic regulation and the aging process. J Mol Med 95:123–131. https://doi.org/10.1007/s00109-016-1477-1

Salvestrini V, Sell C, Lorenzini A (2019) Obesity may accelerate the aging process . Front Endocrinol 10:266. https://doi.org/10.3389/fendo.2019.00266

Santos J, Leitão-Correia F, Sousa MJ, Leão C (2016) Dietary restriction and nutrient balance in aging. Oxid Med Cell Longev 2016:4010357.  https://doi.org/10.1155/2016/4010357

Saretzki G (2018) Telomeres, telomerase and ageing. Sub-cell Biochem 90:221–308. https://doi.org/10.1007/978-981-13-2835-0_9

Sasongko TH, Ismail NF, Zabidi-Hussin Z (2016) Rapamycin and rapalogs for tuberous sclerosis complex. Cochrane Database Syst Rev 7:011272. https://doi.org/10.1002/14651858.CD011272.pub2

Sawda C, Moussa C, Turner RS (2017) Resveratrol for Alzheimer’s disease. Ann N Y Acad Sci 1403:142–149. https://doi.org/10.1111/nyas.13431

Schlender L et al (2017) Efficacy and safety of metformin in the management of type 2 diabetes mellitus in older adults: a systematic review for the development of recommendations to reduce potentially inappropriate prescribing. BMC Geriatr 17:227. https://doi.org/10.1186/s12877-017-0574-5

Senovilla L et al (2012) An immunosurveillance mechanism controls cancer cell ploidy . Science 337:1678–1684. https://doi.org/10.1126/science.1224922

Shay JW (2016) Role of telomeres and telomerase in aging and cancer. Cancer Discov 6:584–593. https://doi.org/10.1158/2159-8290.cd-16-0062

Sheth KA et al (2018) Muscle strength and size are associated with motor unit connectivity in aged mice. Neurobiol Aging 67:128–136. https://doi.org/10.1016/j.neurobiolaging.2018.03.016

Silva P, Sureda A, Tur JA, Andreoletti P, Cherkaoui-Malki M, Latruffe N (2019) How efficient is resveratrol as an antioxidant of the Mediterranean diet, towards alterations during the aging process? Free Radic Res 53:1101–1112. https://doi.org/10.1080/10715762.2019.1614176

Smith BD, Smith GL, Hurria A, Hortobagyi GN, Buchholz TA (2009) Future of cancer incidence in the United States: burdens upon an aging changing nation. J Clin Oncol 27:2758–2765. https://doi.org/10.1200/jco.2008.20.8983

Sorrentino V et al (2017) Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 552:187–193. https://doi.org/10.1038/nature25143

Spescha RD et al (2013) Deletion of the ageing gene p66(Shc) reduces early stroke size following ischaemia/reperfusion brain injury. Eur Heart J 34:96–103. https://doi.org/10.1093/eurheartj/ehs331

Spescha RD et al (2015) Post-ischaemic silencing of p66Shc reduces ischaemia/reperfusion brain injury and its expression correlates to clinical outcome in stroke. Eur Heart J 36:1590–1600. https://doi.org/10.1093/eurheartj/ehv140

Stynen B et al (2018) Changes of cell biochemical states are revealed in protein homomeric. Complex Dyn Cell 175:1418-1429.e1419. https://doi.org/10.1016/j.cell.2018.09.050

Tiwari V, Wilson DM (2019) DNA damage and associated DNA repair defects in disease and premature. Aging Am J Hum Genet 105:237–257. https://doi.org/10.1016/j.ajhg.2019.06.005

Tizazu AM et al (2019) Metformin monotherapy downregulates diabetes-associated inflammatory status and impacts on mortality. Front Physiol 10:572. https://doi.org/10.3389/fphys.2019.00572

Trevisan K, Cristina-Pereira R, Silva-Amaral D, Aversi-Ferreira TA (2019) Theories of aging and the prevalence of Alzheimer’s disease. BioMed Res Int 2019:9171424. https://doi.org/10.1155/2019/9171424

Tsai CF, Wang KT, Chen LG, Lee CJ, Tseng SH, Wang CC (2014) Anti-inflammatory effects of Vitis thunbergii var. taiwaniana on knee damage associated with arthritis. J Med Food 17:479–486. https://doi.org/10.1089/jmf.2013.2914

Tseng CH (2016) Metformin reduces gastric cancer risk in patients with type 2 diabetes mellitus. Aging 8:1636–1649. https://doi.org/10.18632/aging.101019

Ullah M, Sun Z (2019) Klotho deficiency accelerates stem cells aging by impairing telomerase activity. J Gerontol Ser A 74:1396–1407. https://doi.org/10.1093/gerona/gly261

van Deursen JM (2014) The role of senescent cells in ageing. Nature 509:439–446. https://doi.org/10.1038/nature13193

Vera E, Bernardes de Jesus B, Foronda M, Flores JM, Blasco MA (2013) Telomerase reverse transcriptase synergizes with calorie restriction to increase health span and extend mouse longevity. PLoS ONE 8:e53760. https://doi.org/10.1371/journal.pone.0053760

Villareal DT et al (2016) Effect of two-year caloric restriction on bone metabolism and bone mineral density in non-obese younger adults: a randomized clinical trial. J Bone Miner Res 31:40–51. https://doi.org/10.1002/jbmr.2701

Wang Y, Zhao X, Lotz M, Terkeltaub R, Liu-Bryan R (2015) Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α  Arthrit Rheumatol 67:2141–2153. https://doi.org/10.1002/art.39182

Wang X et al (2016) Resveratrol exerts dosage-dependent effects on the self-renewal and neural differentiation of hUC-MSCs. Mol Cells 39:418–425. https://doi.org/10.14348/molcells.2016.2345

Wang L et al (2017) High-throughput functional genetic and compound screens identify targets for senescence induction in cancer. Cell Rep 21:773–783. https://doi.org/10.1016/j.celrep.2017.09.085

Wang X et al (2018) Resveratrol promotes hUC-MSCs engraftment and neural repair in a mouse model of Alzheimer’s disease. Behav Brain Res 339:297–304. https://doi.org/10.1016/j.bbr.2017.10.032

Wiley CD et al (2016) Mitochondrial dysfunction induces senescence with a distinct secretory. Phenotype Cell Metab 23:303–314. https://doi.org/10.1016/j.cmet.2015.11.011

Winnik S, Auwerx J, Sinclair DA, Matter CM (2015) Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J 36:3404–3412. https://doi.org/10.1093/eurheartj/ehv290

Witte AV, Kerti L, Margulies DS, Flöel A (2014) Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci 34:7862–7870. https://doi.org/10.1523/jneurosci.0385-14.2014

Wong SQ, Kumar AV, Mills J, Lapierre LR (2020) Autophagy in aging and longevity. Hum Genet 139:277–290. https://doi.org/10.1007/s00439-019-02031-7

Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689. https://doi.org/10.1038/nature02789

Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease: a brief review of the basic science and clinical literature. Cold Spring Harbor Perspect Med 2:a006346. https://doi.org/10.1101/cshperspect.a006346

Xia N, Förstermann U, Li H (2017) Effects of resveratrol on eNOS in the endothelium and the perivascular adipose tissue . Ann N Y Acad Sci 1403:132–141. https://doi.org/10.1111/nyas.13397

Xia X, Jiang Q, McDermott J, Han JJ (2018) Aging and Alzheimer’s disease: comparison and associations from molecular to system level. Aging Cell 17:e12802. https://doi.org/10.1111/acel.12802

Xiong C, Zhang Z, Baht GS, Terrando N (2018) A mouse model of orthopedic surgery to study postoperative cognitive dysfunction and tissue regeneration. J Visualiz Exp. https://doi.org/10.3791/56701

Xu S et al (2016) SIRT6 protects against endothelial dysfunction and atherosclerosis in mice. Aging 8:1064–1082. https://doi.org/10.18632/aging.100975

Yuan F, Xu ZM, Lu LY, Nie H, Ding J, Ying WH, Tian HL (2016) SIRT2 inhibition exacerbates neuroinflammation and blood-brain barrier disruption in experimental traumatic brain injury by enhancing NF-κB p65 acetylation and activation. J Neurochem 136:581–593. https://doi.org/10.1111/jnc.13423

Zaza G, Granata S, Caletti C, Signorini L, Stallone G, Lupo A (2018) mTOR inhibition role in cellular mechanisms. Transplantation 102:S3-Ss16. https://doi.org/10.1097/tp.0000000000001806

Zhang G et al (2013) Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497:211–216. https://doi.org/10.1038/nature12143

Zhang W et al (2017) NSCs promote hippocampal neurogenesis, metabolic changes and synaptogenesis in APP/PS1 transgenic mice . Hippocampus 27:1250–1263. https://doi.org/10.1002/hipo.22794

Zhang LF, Yu XL, Ji M, Liu SY, Wu XL, Wang YJ, Liu RT (2018) Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T α-synuclein mouse model of Parkinson’s disease. Food Funct 9:6414–6426. https://doi.org/10.1039/c8fo00964c

Zhang P et al (2019) Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci 22:719–728. https://doi.org/10.1038/s41593-019-0372-9

Zhu Y et al (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:644–658. https://doi.org/10.1111/acel.12344

Zhu Y et al (2016) Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15:428–435. https://doi.org/10.1111/acel.12445

Zhu Y et al (2017) New agents that target senescent cells: the flavone, fisetin, and the BCL-X(L) inhibitors, A1331852 and A1155463. Aging 9:955–963. https://doi.org/10.18632/aging.101202

Zhu X, Yang J, Zhu W, Yin X, Yang B, Wei Y, Guo X (2018) Combination of berberine with resveratrol improves the lipid-lowering efficacy. Int J Mol Sci. https://doi.org/10.3390/ijms19123903

Zhu Y, Liu X, Ding X, Wang F, Geng X (2019) Telomere and its role in the aging pathways: telomere shortening cell senescence mitochondria dysfunction. Biogerontology 20:1–16. https://doi.org/10.1007/s10522-018-9769-1