Aggregation of Authigenic, Ferromagnetic-diamagnetic Nano-FexSy
Tài liệu tham khảo
Puthussery, 2011, Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics, J. Am. Chem. Soc., 133, 716, 10.1021/ja1096368
Cabán-Acevedo, 2012, Synthesis and properties of semiconducting iron pyrite (FeS2) nanowires, Nano Lett., 12, 1977, 10.1021/nl2045364
Kirkeminde, 2012, All inorganic iron pyrite nano-heterojunction solar cells, Nano, 4, 7649
Niederberger, 2002, Benzyl alcohol and titanium tetrachloride—a versatile reaction system for the non-aqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles, Chem. Mater., 14, 78, 10.1021/cm0110472
Bazylinski, 1995, Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium, Appl. Environ. Microbiol., 61, 3232, 10.1128/aem.61.9.3232-3239.1995
Demitrack, 1985, A search for bacterial magnetite in the sediments of Eel Marsh, Woods Hole, Massachusetts, 625
Wolf, 2001, Spintronics: a spin-based electronics vision for the future, Science, 294, 1488, 10.1126/science.1065389
Kasama, 2006, Magnetic properties, microstructure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography, Am. Mineral., 91, 1216, 10.2138/am.2006.2227
Roberts, 2011, Magnetic properties of sedimentary greigite (Fe3S4): an update, Rev. Geophys., 49, 10.1029/2010RG000336
Chen, 2005, Selective fabrication of metastable greigite (Fe3S4) nanocrystallites and its magnetic properties through a simple solution-based route, Chem. Phys. Lett., 403, 396, 10.1016/j.cplett.2005.01.050
He, 2006, Magnetic-field-induced phase-selective synthesis of ferrosulfide microrods by a hydrothermal process: microstructure control and magnetic properties, Adv. Funct. Mater., 16, 115, 10.1002/adfm.200500580
Pósfai, 1998, Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers, Science, 280, 880, 10.1126/science.280.5365.880
Gong, 2013, Symmetry-defying iron pyrite (FeS2) nanocrystals through oriented attachment, Sci. Report., 3, 2092, 10.1038/srep02092
Iakovenko, 1999, One- and two-dimensional arrays of magnetic nanoparticles by the Langmuir–Blodgett technique, Adv. Mater., 11, 388, 10.1002/(SICI)1521-4095(199903)11:5<388::AID-ADMA388>3.0.CO;2-6
Chantrell, 1982, Agglomerate formation in a magnetic fluid, J. Appl. Phys., 53, 2742, 10.1063/1.330953
Pujol, 2004, Growth and self-assembly of nanostructured CoC2O4·2H2O particles, J. Phys. Chem. B, 108, 13128, 10.1021/jp0375261
Dimitrov, 1996, Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces, Langmuir, 12, 1303, 10.1021/la9502251
Nikoobakht, 2000, Self-assembly of gold nanorods, J. Phys. Chem. B, 104, 8635, 10.1021/jp001287p
Barnard, 2007, Shape and thermodynamic stability of pyrite FeS2 nanocrystals and nanorods, J. Phys. Chem. C, 111, 11742, 10.1021/jp0738199
Korgel, 1998, Self-assembly of silver nanocrystals into two dimensional nanowire arrays, Adv. Mater., 10, 661, 10.1002/(SICI)1521-4095(199806)10:9<661::AID-ADMA661>3.0.CO;2-L
Tang, 2006, Self-assembly of CdTe nanocrystals into free-floating sheets, Science, 314, 274, 10.1126/science.1128045
Xiong, 2012, Role of self-assembly in construction of inorganic nanostructural materials, SCIENCE CHINA Chem., 55, 2272, 10.1007/s11426-012-4705-8
He, 2013, Core-shell noble-metal @ metal-organic-framework nanoparticles with highly selective sensing property, Angew. Chem., 52, 3741, 10.1002/anie.201209903
Inumaru, 1998, Porous aggregates of unidirectionally oriented microcrystallites of heteropoly compounds, Microporous Mesoporous Mater., 21, 629, 10.1016/S1387-1811(98)00010-9
Oaki, 2005, Hierarchically-organized superstructure emerging from the exquisite association of inorganic crystals, organic polymers, and dyes: A model approach towards suprabiomineral materials, Adv. Funct. Mater., 15, 1407, 10.1002/adfm.200500025
Ostwald, 1897, Studien uber die Bildung und Umwandlung fester Korper, Z. Phys. Chem., 22, 289, 10.1515/zpch-1897-2233
Penn, 1999, Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania, Geochim. Cosmochim. Acta, 63, 1549, 10.1016/S0016-7037(99)00037-X
Cho, 2005, Morphology evolution of anatase TiO2 nanocrystals under a hydrothermal condition (pH=9.5) and their ultra-high photo-catalytic activity, Mater. Chem. Phys., 92, 104, 10.1016/j.matchemphys.2004.12.036
Raju, 2014, Mechanisms of oriented attachment of TiO2 nanocrystals in vacuum and humid environments: reactive molecular dynamics, Nano Lett., 14, 1836, 10.1021/nl404533k
Fichthorn, 2015, Atomic-scale aspects of oriented attachment, Chem. Eng. Sci., 121, 10, 10.1016/j.ces.2014.07.016