Aggregation of Authigenic, Ferromagnetic-diamagnetic Nano-FexSy

Colloids and Interface Science Communications - Tập 18 - Trang 5-8 - 2017
Eduardo Palacios1, Javiera Cervini-Silva2,3
1Departamento de Microscopia Electrónica, Instituto Mexicano del Petróleo, Mexico City, Mexico
2Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana Unidad Cuajimalpa, México City, Mexico
3Earth Sciences Division, Lawrence Berkeley National Laboratory, United States

Tài liệu tham khảo

Puthussery, 2011, Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics, J. Am. Chem. Soc., 133, 716, 10.1021/ja1096368 Cabán-Acevedo, 2012, Synthesis and properties of semiconducting iron pyrite (FeS2) nanowires, Nano Lett., 12, 1977, 10.1021/nl2045364 Kirkeminde, 2012, All inorganic iron pyrite nano-heterojunction solar cells, Nano, 4, 7649 Niederberger, 2002, Benzyl alcohol and titanium tetrachloride—a versatile reaction system for the non-aqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles, Chem. Mater., 14, 78, 10.1021/cm0110472 Bazylinski, 1995, Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium, Appl. Environ. Microbiol., 61, 3232, 10.1128/aem.61.9.3232-3239.1995 Demitrack, 1985, A search for bacterial magnetite in the sediments of Eel Marsh, Woods Hole, Massachusetts, 625 Wolf, 2001, Spintronics: a spin-based electronics vision for the future, Science, 294, 1488, 10.1126/science.1065389 Kasama, 2006, Magnetic properties, microstructure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography, Am. Mineral., 91, 1216, 10.2138/am.2006.2227 Roberts, 2011, Magnetic properties of sedimentary greigite (Fe3S4): an update, Rev. Geophys., 49, 10.1029/2010RG000336 Chen, 2005, Selective fabrication of metastable greigite (Fe3S4) nanocrystallites and its magnetic properties through a simple solution-based route, Chem. Phys. Lett., 403, 396, 10.1016/j.cplett.2005.01.050 He, 2006, Magnetic-field-induced phase-selective synthesis of ferrosulfide microrods by a hydrothermal process: microstructure control and magnetic properties, Adv. Funct. Mater., 16, 115, 10.1002/adfm.200500580 Pósfai, 1998, Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers, Science, 280, 880, 10.1126/science.280.5365.880 Gong, 2013, Symmetry-defying iron pyrite (FeS2) nanocrystals through oriented attachment, Sci. Report., 3, 2092, 10.1038/srep02092 Iakovenko, 1999, One- and two-dimensional arrays of magnetic nanoparticles by the Langmuir–Blodgett technique, Adv. Mater., 11, 388, 10.1002/(SICI)1521-4095(199903)11:5<388::AID-ADMA388>3.0.CO;2-6 Chantrell, 1982, Agglomerate formation in a magnetic fluid, J. Appl. Phys., 53, 2742, 10.1063/1.330953 Pujol, 2004, Growth and self-assembly of nanostructured CoC2O4·2H2O particles, J. Phys. Chem. B, 108, 13128, 10.1021/jp0375261 Dimitrov, 1996, Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces, Langmuir, 12, 1303, 10.1021/la9502251 Nikoobakht, 2000, Self-assembly of gold nanorods, J. Phys. Chem. B, 104, 8635, 10.1021/jp001287p Barnard, 2007, Shape and thermodynamic stability of pyrite FeS2 nanocrystals and nanorods, J. Phys. Chem. C, 111, 11742, 10.1021/jp0738199 Korgel, 1998, Self-assembly of silver nanocrystals into two dimensional nanowire arrays, Adv. Mater., 10, 661, 10.1002/(SICI)1521-4095(199806)10:9<661::AID-ADMA661>3.0.CO;2-L Tang, 2006, Self-assembly of CdTe nanocrystals into free-floating sheets, Science, 314, 274, 10.1126/science.1128045 Xiong, 2012, Role of self-assembly in construction of inorganic nanostructural materials, SCIENCE CHINA Chem., 55, 2272, 10.1007/s11426-012-4705-8 He, 2013, Core-shell noble-metal @ metal-organic-framework nanoparticles with highly selective sensing property, Angew. Chem., 52, 3741, 10.1002/anie.201209903 Inumaru, 1998, Porous aggregates of unidirectionally oriented microcrystallites of heteropoly compounds, Microporous Mesoporous Mater., 21, 629, 10.1016/S1387-1811(98)00010-9 Oaki, 2005, Hierarchically-organized superstructure emerging from the exquisite association of inorganic crystals, organic polymers, and dyes: A model approach towards suprabiomineral materials, Adv. Funct. Mater., 15, 1407, 10.1002/adfm.200500025 Ostwald, 1897, Studien uber die Bildung und Umwandlung fester Korper, Z. Phys. Chem., 22, 289, 10.1515/zpch-1897-2233 Penn, 1999, Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania, Geochim. Cosmochim. Acta, 63, 1549, 10.1016/S0016-7037(99)00037-X Cho, 2005, Morphology evolution of anatase TiO2 nanocrystals under a hydrothermal condition (pH=9.5) and their ultra-high photo-catalytic activity, Mater. Chem. Phys., 92, 104, 10.1016/j.matchemphys.2004.12.036 Raju, 2014, Mechanisms of oriented attachment of TiO2 nanocrystals in vacuum and humid environments: reactive molecular dynamics, Nano Lett., 14, 1836, 10.1021/nl404533k Fichthorn, 2015, Atomic-scale aspects of oriented attachment, Chem. Eng. Sci., 121, 10, 10.1016/j.ces.2014.07.016