Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các đặc điểm khác nhau theo độ tuổi và không thay đổi theo độ tuổi của tổ chức não chức năng ở người lớn tuổi và trung niên mắc chứng tự kỷ
Tóm tắt
Phần lớn nỗ lực nghiên cứu về chứng tự kỷ đã được dành cho việc hiểu các cơ chế trong giai đoạn phát triển sớm. Do đó, nghiên cứu về hành trình sống rộng lớn hơn của tình trạng phổ tự kỷ (ASC) đã phần lớn bị bỏ qua và gần như không có gì được biết đến về ASC ngoài độ tuổi trung niên. Sự khác biệt trong kết nối não phát sinh trong giai đoạn phát triển sớm có thể được duy trì suốt đời và có thể đóng vai trò bảo vệ hoặc có hại trong độ tuổi cao. Nghiên cứu này khám phá sự khác biệt liên quan đến độ tuổi trong kết nối chức năng giữa độ tuổi trung niên và cao tuổi ở những người trưởng thành tự kỷ được chẩn đoán lâm sàng (n=44, 30-73 tuổi) và trong một nhóm đối chứng điển hình có độ tuổi tương đương (n=45). Kết quả cho thấy mối liên hệ theo độ tuổi song song ở ASC và lão hóa điển hình với hiệu suất cục bộ và sức mạnh kết nối của mạng lưới chế độ mặc định cũng như sự phân tách của mạng lưới điều khiển trước trán - đỉnh chẩm. Ngược lại, sự khác biệt giữa các nhóm trong kết nối mạng lưới thị giác phù hợp với một diễn giải bảo vệ về sự suy giảm chức năng não ít hơn liên quan đến độ tuổi ở ASC. Sự phân kỳ này được phản ánh trong các mối liên hệ khác nhau giữa kết nối mạng lưới thị giác và sự biến đổi thời gian phản ứng ở nhóm ASC và nhóm đối chứng. Nghiên cứu này có tính chất cắt ngang và có thể bị ảnh hưởng bởi các hiệu ứng nhóm. Vì tất cả các người tham gia đều nhận được chẩn đoán tự kỷ trong độ tuổi trưởng thành, điều này có thể cản trở khả năng tổng quát hóa. Những kết quả này làm nổi bật sự phức tạp của quá trình lão hóa ở ASC với cả hai quỹ đạo song song và phân kỳ trên các khía cạnh khác nhau của tổ chức mạng lưới chức năng.
Từ khóa
#tự kỷ #lão hóa #kết nối chức năng #mạng lưới não #tổ chức mạng lưới chức năngTài liệu tham khảo
Kenny L, Hattersley C, Molins B, Buckley C, Povey C, Pellicano E. Which terms should be used to describe autism? Perspectives from the UK autism community. Autism. 2016;20:442–62.
Gillberg C, Billstedt E, Sundh V, Gillberg CI. Mortality in autism: a prospective longitudinal community-based study. J Autism Dev Disord. 2010;40:352–7.
Hirvikoski T, Mittendorfer-Rutz E, Boman M, Larsson H, Lichtenstein P, Bölte S. Premature mortality in autism spectrum disorder. Brit J Psychiat. 2016;208:232–8.
Lever AG, Geurts HM. Age-related differences in cognition across the adult lifespan in autism spectrum disorder. Autism Res. 2016;9:666–76.
Burgess PW, Alderman N, Evans J, Eie H, Wilson RA. The ecological validity of tests of executive function. J Int Neuropsych Soc. 1998;4:547–58.
Smith S, Fox PT, Miller KL, Glahn DC, Fox MP, Mackay CE, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc National Acad Sci. 2009;106(13040):13045.
Hull JV, Dokovna LB, Jacokes ZJ, Torgerson CM, Irimia A, Horn J. Resting-state functional connectivity in autism spectrum disorders: a review. Frontiers Psychiatry. 2017;7:205.
Itahashi T, Yamada T, Watanabe H, Nakamura M, Ohta H, Kanai C, et al. Alterations of local spontaneous brain activity and connectivity in adults with high-functioning autism spectrum disorder. Mol Autism. 2015;6:30.
Itahashi T, Yamada T, Watanabe H, Nakamura M, Jimbo D, Shioda S, et al. Altered network topologies and hub organization in adults with autism: a resting-state fMRI study. PLoS One. 2014;9:e94115.
Moseley RL, Ypma RJF, Holt RJ, Floris D, Chura LR, Spencer, et al. Whole-brain functional hypoconnectivity as an endophenotype of autism in adolescents. Neuroimage Clin. 2015;9:140–52.
Glerean E, Pan RK, Salmi J, Kujala R, Lahnakoski JM, Roine U, et al. Reorganization of functionally connected brain subnetworks in high-functioning autism. Hum Brain Mapp. 2015;37:1066–79.
Padmanabhan A, Lynch CJ, Schaer M, Menon V. The default mode network in autism. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2:476–86.
Just M, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007;17:951–61.
Lynch CJ, Uddin LQ, Supekar K, Khouzam A, Phillips J, Menon V. Default mode network in childhood autism: posteromedial cortex heterogeneity and relationship with social deficits. Biol Psychiatry. 2013;74:212–9.
Geurts HM, Vissers ME. Elderly with autism: executive functions and memory. J Autism Dev Disord. 2012;42:665–75.
Kirkpatrick B, Kennedy BK. Accelerated aging in schizophrenia and related disorders: future research. Schizophr Res. 2018;196:4–8.
Oberman LM, Pascual-Leone A. Hyperplasticity in autism spectrum disorder confers protection from Alzheimer’s disease. Med Hypotheses. 2014;83:337–42.
Hillary FG, Grafman JH. Injured brains and adaptive networks: the benefits and costs of hyperconnectivity. Trends Cogn Sci. 2017;21:385–401.
Koolschijn CP, Caan M, Teeuw J, Olabarriaga SD, Geurts HM. Age-related differences in autism: the case of white matter microstructure. Hum Brain Mapp. 2017;38:82–96.
Koolschijn CP, Geurts HM. Gray matter characteristics in mid and old aged adults with ASD. J Autism Dev Disord. 2016;46:2666–78.
Lord C, Rutter M, Goode S, Heemsbergen J, Jordan H, Mawhood L, Schopler E. Austism diagnostic observation schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord. 1989;19:185–212.
Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. The autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, Malesand females, scientists and mathematicians. J Autism Dev Disord. 2001;31:5–17.
Ecker C, Suckling J, Deoni SC, Lombardo MV, Bullmore ET, Baron-Cohen S, et al. Brain anatomy and its relationship to behavior in adults with autism Spectrum disorder: a multicenter magnetic resonance imaging study. Arch Gen Psychiat. 2012;69:195–209.
Lai M-C, Lombardo MV, Suckling J, Ruigrok AN, Chakrabarti B, Ecker C, et al. Biological sex affects the neurobiology of autism. Brain. 2013;136:2799–815.
Esteban O, Markiewicz C, Blair RW, Moodie C, Isik A, Aliaga A, et al. FMRIPrep: a robust preprocessing pipeline for functional MRI. Biorxiv. 2018;306951.
Power JD, Cohen AL, Nelson SM, Wig GS, Barnes K, Church JA, et al. Functional network organization of the human brain. Neuron. 2011;72. https://doi.org/10.1016/j.neuron.2011.09.006.
Laumann TO, Gordon EM, Adeyemo B, Snyder AZ, Joo S, Chen M-Y, et al. Functional system and areal organization of a highly sampled individual human brain. Neuron. 2015;87:657–70.
Hacker CD, Laumann TO, Szrama NP, Baldassarre A, Snyder AZ, Leuthardt EC, Corbetta M. Resting state network estimation in individual subjects. Neuroimage. 2013;82:616–33.
Anderson JS, Ferguson MA, Lopez-Larson M, Yurgelun-Todd D. Reproducibility of single-subject functional connectivity measurements. Am J Neuroradiol. 2011;32:548–55.
Elliott ML, Knodt AR, Cooke M, Kim JM, Melzer TR, Keenan R, et al. General functional connectivity: Shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks. 2019. https://doi.org/10.1016/j.neuroimage.2019.01.068.
Fair DA, Schlaggar BL, Cohen AL, Miezin FM, Dosenbach N, Wenger KK, et al. A method for using blocked and event-related fMRI data to study “resting state” functional connectivity. NeuroImage. 2007;35:396–405.
Grützner C, Uhlhaas PJ, Genc E, Kohler A, Singer W, Wibral M. Neuroelectromagnetic correlates of perceptual closure processes. J Neurosci. 2010;30:8342–52.
van Veen V, Cohen JD, Botvinick MM, Stenger VA, Carter CS. Anterior cingulate cortex, conflict monitoring, and levels of processing. Neuroimage. 2001;14:1302–8.
Happé F, Ronald A. The ‘Fractionable autism triad’: a review of evidence from behavioural, genetic, cognitive and neural research. Neuropsychol Rev. 2008;18:287–304.
Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage. 2014;84:320–41.
Esteban O, Birman D, Schaer M, Koyejo OO, Poldrack RA, Gorgolewski KJ. MRIQC: advancing the automatic prediction of image quality in MRI from unseen sites. PLoS One. 2017;12:e0184661.
Geerligs L, Renken RJ, Saliasi E, Maurits NM, Lorist MM. A brain-wide study of age-related changes in functional connectivity. Cereb Cortex. 2015;25:1987–99.
Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, et al. Machine learning for neuroimaging with scikit-learn. Front Neuroinform. 2014;8:14.
Lancichinetti A, Fortunato S. Consensus clustering in complex networks. Sci Rep-uk. 2012;2:336.
Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Statistical Mech Theory Exp. 2008;2008:P10008.
van Wijk BC, Stam CJ, Daffertshofer A. Comparing brain networks of different size and connectivity density using graph theory. PLoS One. 2010;5:e13701.
van den Heuvel M, Sporns O. Rich-Club Organization of the Human Connectome. J Neurosci. 2011;31(15775):15786.
Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire P, Bullmore ET. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain. 2014;137(2382):2395.
Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(1059):1069.
Damoiseaux JS, Beckmann CF, Arigita EJ, Barkhof F, Scheltens P, Stam CJ, et al. Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex. 2008;18:1856–64.
Ferreira L, Busatto GF. Resting-state functional connectivity in normal brain aging. Neurosci Biobehav Rev. 2013;37:384–400.
Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol. 2009;103:297–321.
Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, et al. Distinct patterns of brain activity in young carriers of the APOE-ε4 allele. Proc National Acad Sci. 2009;106:7209–14.
van den Heuvel MP, de Lange SC, Zalesky A, Seguin C, Yeo BT, Schmidt R. Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: issues and recommendations. Neuroimage. 2017;152:437–49.
Linke AC, Olson L, Gao Y, Fishman I, Müller R-A. Psychotropic medication use in autism spectrum disorders may affect functional brain connectivity. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2:518–27.
Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys. 1974;16:143–9.
Lustig C, Jantz T. Questions of age differences in interference control: when and how, not if? Brain Res. 2015;1612:59–69.
Geurts HM, Bergh SF, Ruzzano L. Prepotent response inhibition and interference control in autism spectrum disorders: two meta-analyses. Autism Res. 2014;7:407–20.
Bielak AA, Cherbuin N, Bunce D, Anstey KJ. Intraindividual variability is a fundamental phenomenon of aging: evidence from an 8-year longitudinal study across young, middle, and older adulthood. Dev Psychol. 2014;50:143.
Bielak AA, Hultsch DF, Strauss E, MacDonald SW, Hunter MA. Intraindividual variability in reaction time predicts cognitive outcomes 5 years later. Neuropsychology. 2010;24:731.
Monk CS, Peltier SJ, Wiggins J, Weng S-J, Carrasco M, Risi S, Lord C. Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage. 2009;47:764–72.
Assaf M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl R, et al. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage. 2010;53:247–56.
Kemp J, Després O, Sellal F, Dufour A. Theory of mind in normal ageing and neurodegenerative pathologies. Ageing Res Rev. 2012;11:199–219.
Baron-Cohen S, O’Riordan M, Stone V, Jones R, Plaisted K. A new test of social sensitivity: detection of faux pas in normal children and children with Asperger syndrome. J Autism Dev Disord. 1999;29:407–18.
Jacomy M, Venturini T, Heymann S, Bastian M. ForceAtlas2, a continuous graph layout algorithm for Handy network visualization designed for the Gephi software. PLoS One. 2014;9:e98679.
Tomasi D, Volkow ND. Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2012;71(443):450.
Betzel RF, Byrge L, He Y, Goñi J, Zuo X-N, Sporns O. Changes in structural and functional connectivity among resting-state networks across the human lifespan. Neuroimage. 2014;102:345–57.
Song J, Birn RM, Boly M, Meier TB, Nair VA, Meyerand ME, Prabhakaran V. Age-related reorganizational changes in modularity and functional connectivity of human brain networks. Brain Connectivity. 2014;4:662–76.
Hedden T, Dijk KR, Becker AJ, Mehta A, Sperling RA, Johnson KA, Buckner RL. Disruption of functional connectivity in clinically Normal older adults harboring amyloid burden. J Neurosci. 2009;29:12686–94.
Bero AW, Bauer AQ, Stewart FR, White BR, Cirrito JR, Raichle ME, et al. Bidirectional relationship between functional connectivity and amyloid-β deposition in mouse brain. J Neurosci. 2012;32:4334–40.
Westlye ET, Lundervold A, Rootwelt H, Lundervold AJ, Westlye LT. Increased hippocampal default mode synchronization during rest in middle-aged and elderly APOE ε4 carriers: relationships with memory performance. J Neurosci. 2011;31:7775–83.
Dennis EL, Thompson PM. Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol Rev. 2014;24:49–62.
Nomi JS, Uddin LQ. Developmental changes in large-scale network connectivity in autism. Neuroimage Clin. 2015;7:732–41.
Zuo X-N, Kelly C, Martino A, Mennes M, Margulies DS, Bangaru S, et al. Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci. 2010;30:15034–43.
Chan MY, Park DC, Savalia NK, Petersen SE, Wig GS. Decreased segregation of brain systems across the healthy adult lifespan. Proc National Acad Sci. 2014;111:E4997–5006.
Grady C, Sarraf S, Saverino C, Campbell K. Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks. Neurobiol Aging. 2016;41:159–72.
Walsh M, Baxter LC, Smith CJ, Braden BB. Age group differences in executive network functional connectivity and relationships with social behavior in men with autism spectrum disorder. Res Autism Spect Dis. 2019. https://doi.org/10.1016/j.rasd.2019.02.008.
Shaw EE, Schultz AP, Sperling RA, Hedden T. Functional connectivity in multiple cortical networks is associated with performance across cognitive domains in older adults. Brain Connectivity. 2015;5:505–16.
Ng K, Lo JC, Lim J, Chee M, Zhou J. Reduced functional segregation between the default mode network and the executive control network in healthy older adults: a longitudinal study. Neuroimage. 2016;133:321–30.
Gallen CL, Turner GR, Adnan A, D’Esposito M. Reconfiguration of brain network architecture to support executive control in aging. Neurobiol Aging. 2016;44:42–52.
Chhatwal JP, Schultz AP, Johnson KA, Hedden T, Jaimes S, Benzinger TL, et al. Preferential degradation of cognitive networks differentiates Alzheimer’s disease from ageing. Brain. 2018;141:1486–500.
Ward L, Aitchison R, Tawse M, Simmers A, Shahani U. Reduced Haemodynamic response in the ageing visual cortex measured by absolute fNIRS. PLoS One. 2015;10:e0125012.
Roberts KL, Allen HA. Perception and cognition in the ageing brain: a brief review of the short- and long-term links between perceptual and cognitive decline. Front Aging Neurosci. 2016;8:39.
Maylor EA, Moulson JM, Muncer A, Taylor LA. Does performance on theory of mind tasks decline in old age? Brit J Psychol. 2002;93:465–85.
Begeer S, Gevers C, Clifford P, Verhoeve M, Kat K, Hoddenbach E, Boer F. Theory of mind training in children with autism: a randomized controlled trial. J Autism Dev Disord. 2011;41:997–1006.
Holt R, Chura L, Lai M-C, Suckling J, von dem Hagen E, Calder A, et al. ‘Reading the mind in the eyes’: an fMRI study of adolescents with autism and their siblings. Psychol Med. 2014;44:3215–27.
American Psychiatric Assocation. Diagnostic and statistical manual of mental disorders (3rd ed.). Washington: Author; 1980.
Starkstein S, Gellar S, Parlier M, Payne L, Piven J. High rates of parkinsonism in adults with autism. J Neurodev Disord. 2015;7:29.
Yan W, Rangaprakash D, Deshpande G. Aberrant hemodynamic responses in autism: implications for resting state fMRI functional connectivity studies. Neuroimage Clin. 2018;19:320–30.
Tsvetanov KA, Henson RN, Tyler LK, Davis SW, Shafto MA, Taylor JR, et al. The effect of ageing on fMRI: correction for the confounding effects of vascular reactivity evaluated by joint fMRI and MEG in 335 adults. Hum Brain Mapp. 2015;36:2248–69.
Schmand B, Huizenga H, van Gool W. Meta-analysis of CSF and MRI biomarkers for detecting preclinical Alzheimer’s disease. Psychol Med. 2010;40:135–45.
Brier MR, Thomas JB, Snyder AZ, Wang L, Fagan AM, Benzinger T, et al. Unrecognized preclinical Alzheimer disease confounds rs-fcMRI studies of normal aging. Neurology. 2014;83:1613–9.
van Heijst BF, Geurts HM. Quality of life in autism across the lifespan: a meta-analysis. Autism. 2015;19:158–67.
Kochunov P, Glahn DC, Rowland LM, Olvera RL, Winkler A, Yang Y-H, et al. Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression. Biol Psychiatry. 2013;73:482–91.
Das D, Cherbuin N, Easteal S, Anstey KJ. Attention deficit/hyperactivity disorder symptoms and cognitive abilities in the late-life cohort of the PATH through life study. PLoS One. 2014;9:e86552.