Age‐related maculopathy and the impact of blue light hazard

Wiley - Tập 84 Số 1 - Trang 4-15 - 2006
Peep V. Algvere1, John Marshall2, Stefan Seregard1
1Karolinska Institute, St Erik's Eye Hospital, Stockholm, Sweden
2Rayne Institute, St Thomas' Hospital, London, UK

Tóm tắt

Abstract. The pathogenesis of age‐related maculopathy (ARM), the most common cause of visual loss after the age of 60 years, is indeed a complicated scenario that involves a variety of hereditary and environmental factors. The pathological cellular and molecular events underlying retinal photochemical light damage, including photoreceptor apoptosis, have been analysed in experimental animal models. Studies of age‐related alterations of the retina and photoreceptors, the accumulation of lipofuscin in retinal pigment epithelium (RPE) cells, and the formation of drusen have greatly contributed to our knowledge. A new concept of an inflammatory response to drusen has emerged, suggesting immunogenic and systemic reactions in Bruch's membrane and the subretinal space. Oxidative stress and free radical damage also impact on the photoreceptors and RPE cells in the ageing eye. Based on the photoelectric effect, a fundamental concept in quantum physics, the consequences of high‐energy irradiation have been analysed in animal models and cell culture. Short‐wavelength radiation (rhodopsin spectrum), and the blue light hazard (excitation peak 440 nm), have been shown to have a major impact on photoreceptor and RPE function, inducing photochemical damage and apoptotic cell death. Following cataract surgery, there is a dramatic change in ocular transmittance. In aphakic or pseudophakic eyes (with clear intraocular lenses), high‐energy (blue) and ultraviolet‐A radiation strikes the retina. Epidemiological data indicate a significantly increased 5‐year incidence of late ARM in non‐phakic eyes compared with phakic eyes. In recent years, putative prophylactic measures against ARM have emerged. The implantation of ‘yellow’ intraocular lenses (IOLs) that absorb high‐energy blue radiation is, from a theoretical point of view, the most rational approach, and, from a practical point of view, is easy to accomplish. With increasing age, RPE cells accumulate lipofuscin (chromophore A2E). It is noteworthy that the yellow IOL not only protects A2E‐laden human RPE cells from blue light (peak 430 nm) damage, but also alleviates the detrimental effects of green (peak 550 nm) and white light. A prophylactic treatment using antioxidants is aimed at counteracting oxidative stress and free radical cellular damage. The Age‐Related Eye Disease Study (AREDS), a randomized clinical trial, showed a significantly lower incidence of late ARM in a cohort of patients with drusen maculopathy treated with high doses of antioxidants than in a placebo group. In recent years, considerable progress in retinal research has been achieved, creating a platform for the search for new prophylactic and therapeutic measures to alleviate or prevent photoreceptor and RPE degeneration in ARM.

Từ khóa


Tài liệu tham khảo

10.1001/archopht.121.11.1621

10.1001/archopht.122.5.716

10.1001/archopht.119.10.1417

10.1034/j.1600-0420.2002.800204.x

10.1016/0014-4835(73)90185-1

10.1038/nm950

10.1016/S0002-9394(02)01624-0

10.1016/j.exer.2003.10.011

10.1016/S1568-1637(02)00008-9

10.1016/S0039-6257(00)00140-5

Benson H, 1991, University Physics., 820

Berendschot TTJM, 2002, Macular pigment and melanin in age‐related maculopathy in a general population, Invest Ophthalmol Vis Sci, 43, 1928

10.1006/exer.2000.0949

10.1136/bjo.2004.057794

10.1016/S0140-6736(04)17138-9

Boettner EA, 1962, Transmission of the ocular media, Invest Ophthalmol, 1, 776

10.1016/1011-1344(93)87085-2

10.1016/S1011-1344(01)00227-5

10.1001/archopht.123.4.547

10.1136/bjo.82.9.996

10.1001/archopht.123.3.395

10.1001/archopht.122.6.883

10.1126/science.996550

10.1136/bjo.87.8.1032

10.1016/j.ajo.2004.05.057

10.1001/archopht.122.7.1013

10.1001/archopht.1993.01090040106042

Cruickshanks KJ, 2001, Sunlight and the 5‐year incidence of early age‐related maculopathy. The Beaver Dam Eye Study, Arch Ophthalmol, 119, 246

Curcio CA, 1993, Photoreceptor loss in age‐related macular degeneration, Invest Ophthalmol Vis Sci, 37, 1236

10.1001/archopht.117.3.329

Curcio CA, 2000, Spare the rods, save the cones in ageing and age‐related maculopathy, Invest Ophthalmol Vis Sci, 41, 2015

10.1001/archopht.122.4.650

10.1016/j.preteyeres.2004.05.004

10.1016/S0891-5849(01)00582-2

Delori FC, 2001, Age‐related accumulation and spatial distribution of lipofuscin in RPE of normal subjects, Invest Ophthalmol Vis Sci, 42, 1855

Demontis GC, 2002, Molecular steps in light‐induced oxidative damage to retinal rods, Invest Ophthalmol Vis Sci, 43, 2421

Dick JSB, 2001, Retina, 987

10.1126/science.1110189

Eldred GE, 1998, The Retinal Pigment Epithelium: Function and Disease, 651

10.1167/iovs.03-0910

10.1167/iovs.03-0038

10.1167/iovs.04-0810

10.1016/S0002-9394(14)75193-1

10.1111/j.1751-1097.1995.tb02343.x

Gao H, 1992, Ageing of the human retina. Differential loss of neurons and retinal pigment epithelial cells, Invest Ophthalmol Vis Sci, 33, 1

10.1364/JOSAA.19.001172

10.1016/S0161-6420(93)31466-1

Grimm C, 2000, Blue light's effects on rhodopsin: photoreversal of bleaching in living rat eyes, Invest Ophthalmol Vis Sci, 41, 3984

10.1038/75614

Grimm C, 2001, Rhodopsin‐mediated blue light damage to the rat retina: effect of photoreversal bleaching, Invest Ophthalmol Vis Sci, 42, 497

Grossniklaus HE, 2002, Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization, Mol Vis, 8, 199

Guo L, 1999, Age‐dependant variation in metalloproteinase activity of isolated human Bruch's membrane and choroids, Invest Ophthalmol Vis Sci, 40, 2676

10.1006/exer.1997.0288

10.1073/pnas.0501536102

10.1016/S1350-9462(01)00010-6

10.1126/science.1110359

Ham WT, 1978, Histologic analysis of photochemical lesions produced in rhesus retina by short‐wavelength light, Invest Ophthalmol Vis Sci, 17, 1029

10.1038/ng984

HolzFG BellmanC StaudtS SchüttF&VöckerHE(2001): Fundus autofluorescence and development of geographic atrophy in age‐related macular degeneration. 42:1051–1056.

10.1016/j.ajo.2003.11.026

10.1007/978-3-662-05199-3

10.1016/S0014-4835(02)92032-4

JacksonG(2005): Scotopic vision may be affected by blue‐blocking lens. [Ophthalmology Times.]http://www.ophthalmologytimes.com. [Accessed 1 July 2005.]

10.1007/s00417-004-0995-7

10.1001/archopht.123.1.102

10.1076/ceyr.23.1.11.5423

10.1167/iovs.03-0436

Katz ML, 2001, Effect of RPE65 knockout on accumulation of lipofuscin fluorophores in the retinal pigment epithelium, Invest Ophthalmol Vis Sci, 42, 3023

10.1016/0042-6989(89)90028-X

10.1001/archopht.116.4.506

10.1126/science.1109557

10.1136/bjo.81.2.154

10.1146/annurev.nutr.23.011702.073307

Kuwabara T, 1976, Light effect on the synaptic organ of the rat, Invest Ophthalmol, 15, 407

Kvanta A, 1996, Subfoveal fibrovascular membranes in age‐related macular degeneration express vascular endothelial growth factor, Invest Ophthalmol Vis Sci, 37, 1929

10.1016/j.ophtha.2003.08.031

10.1093/jnci/95.13.1004

10.1016/S0047-6374(99)00047-0

10.1016/S0014-4835(03)00023-X

10.1001/archopht.123.4.550

10.1136/bjo.87.12.1523

10.1016/j.preteyeres.2004.05.001

10.1111/j.1475-1313.1985.tb00666.x

10.1038/eye.1987.47

Mellerio J, 1994, Principles and Practice of Ophthalmology, Basic Sciences., 1326

10.7326/0003-4819-142-1-200501040-00110

10.1016/S0161-6420(02)01055-2

10.1111/j.1600-0420.2004.00248.x

10.1023/A:1022419606629

Nilsson SEG, 1990, Does a blue light absorbing IOL material protect the neuro‐retina and pigment epithelium better than currently used materials?, Lasers Light Ophthalmol, 3, 1

Noell WK, 1966, Retinal damage by visible light, Invest Ophthalmol, 5, 450

O'Steen WK, 1974, Photoreceptor degeneration in albino rats: dependency on age, Invest Ophthalmol, 13, 334

10.1056/NEJM199605023341802

10.1016/1350-9462(94)90003-5

10.1016/S0161-6420(90)32619-2

10.1016/S0003-9861(02)00260-6

10.1016/S0161-6420(96)30464-8

10.1038/eye.1997.138

Rapp LM, 1992, Morphologic comparisons between rhodopsin‐mediated and short‐wavelength classes of retinal light damage, Invest Ophthalmol Vis Sci, 33, 3367

10.1167/iovs.03-0277

10.1016/S0891-5849(97)00395-X

10.1167/iovs.03-0097

10.1136/bjo.78.6.441

10.1167/iovs.03-1311

10.1007/s00417-002-0558-8

Schütt F, 2000, Photodamage to human RPE cells by A2E, a retinoid component of lipofuscin, Invest Ophthalmol Vis Sci, 41, 2303

10.1001/archopht.121.12.1728

10.1001/jama.291.6.704

10.1001/archopht.123.6.774

10.1007/BF00175983

10.1034/j.1600-0420.2002.800404.x

10.1097/00006982-200310000-00001

10.1016/S0161-6420(02)01756-6

10.1016/j.ophtha.2004.08.012

Sparrow JR, 2001, Blue light‐induced apoptosis of A2E‐containing RPE: involvement of caspase‐3 and protection by Bcl‐2, Invest Ophthalmol Vis Sci, 42, 1356

10.1016/j.jcrs.2004.01.031

Sparrow JR, 2002, Involvement of oxidative mechanisms in blue light‐induced damage to A2E‐laden RPE, Invest Ophthalmol Vis Sci, 43, 1222

10.1167/iovs.02-0746

10.1016/0042-6989(80)90049-8

10.1016/S0039-6257(99)00086-7

Starita C, 1997, Localization of the site of major resistance to fluid transport in Bruch's membrane, Invest Ophthalmol Vis Sci, 38, 762

10.1056/NEJMoa040833

10.1016/S0891-5849(01)00573-1

10.1074/jbc.M007049200

10.1196/annals.1297.015

10.1038/sj.eye.6701978

10.7326/0003-4819-139-1-200307010-00013

10.1016/S0161-6420(03)00816-9

10.1016/j.preteyeres.2004.08.002

10.1016/S0891-5849(96)00555-2

10.1097/00006324-200002000-00011

Wu J, 2002, Involvement of Caspase‐3 in photoreceptor cell apoptosis induced by in vivo blue light exposure, Invest Ophthalmol Vis Sci, 43, 3349

10.1038/eye.1999.142