Age-related changes in large-conductance calcium-activated potassium channels in mammalian circadian clock neurons

Neurobiology of Aging - Tập 36 - Trang 2176-2183 - 2015
Sahar Farajnia1, Johanna H. Meijer1, Stephan Michel1
1Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands

Tài liệu tham khảo

Berridge, 2012, Calcium signalling remodelling and disease, Biochem. Soc. Trans., 40, 297, 10.1042/BST20110766 Biello, 2009, Circadian clock resetting in the mouse changes with age, Age (Dordr), 31, 293, 10.1007/s11357-009-9102-7 Cloues, 2003, Afterhyperpolarization regulates firing rate in neurons of the suprachiasmatic nucleus, J. Neurosci., 23, 1593, 10.1523/JNEUROSCI.23-05-01593.2003 Colwell, 2000, Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus, Eur. J. Neurosci., 12, 571, 10.1046/j.1460-9568.2000.00939.x D'Ambrosio, 2002, Perforated patch-clamp technique, Neuromethods, 35, 195 Diaz-Munoz, 1999, Circadian modulation of the ryanodine receptor type 2 in the SCN of rodents, Neuroreport, 10, 481, 10.1097/00001756-199902250-00007 Disterhoft, 2006, Pharmacological and molecular enhancement of learning in aging and Alzheimer's disease, J. Physiol. Paris, 99, 180, 10.1016/j.jphysparis.2005.12.079 Duncan, 2010, Control of intracellular calcium signaling as a neuroprotective strategy, Molecules, 15, 1168, 10.3390/molecules15031168 Faber, 2002, Physiological role of calcium-activated potassium currents in the rat lateral amygdala, J. Neurosci., 22, 1618, 10.1523/JNEUROSCI.22-05-01618.2002 Farajnia, 2012, Evidence for neuronal desynchrony in the aged suprachiasmatic nucleus clock, J. Neurosci., 32, 5891, 10.1523/JNEUROSCI.0469-12.2012 Farajnia, 2014, Seasonal induction of GABAergic excitation in the central mammalian clock, Proc. Natl. Acad. Sci. U. S. A., 111, 9627, 10.1073/pnas.1319820111 Foster, 2007, Calcium homeostasis and modulation of synaptic plasticity in the aged brain, Aging Cell, 6, 319, 10.1111/j.1474-9726.2007.00283.x Grynkiewicz, 1985, A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem., 260, 3440, 10.1016/S0021-9258(19)83641-4 Gu, 2007, BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells, J. Physiol., 580, 859, 10.1113/jphysiol.2006.126367 Harrisingh, 2008, Circadian rhythms. Integrating circadian timekeeping with cellular physiology, Science, 320, 879, 10.1126/science.1158619 Hermes, 2010, Intracellular calcium signalling in Alzheimer's disease, J. Cell. Mol. Med., 14, 30, 10.1111/j.1582-4934.2009.00976.x Irwin, 2007, Calcium response to retinohypothalamic tract synaptic transmission in suprachiasmatic nucleus neurons, J. Neurosci., 27, 11748, 10.1523/JNEUROSCI.1840-07.2007 Itri, 2005, Fast delayed rectifier potassium current is required for circadian neural activity, Nat. Neurosci., 8, 650, 10.1038/nn1448 Itri, 2010, Circadian regulation of a-type potassium currents in the suprachiasmatic nucleus, J. Neurophysiol., 103, 632, 10.1152/jn.00670.2009 Jackson, 2004, Mechanism of spontaneous firing in dorsomedial suprachiasmatic nucleus neurons, J. Neurosci., 24, 7985, 10.1523/JNEUROSCI.2146-04.2004 Kent, 2008, BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus, PLoS One, 3, e3884, 10.1371/journal.pone.0003884 Kononenko, 2004, Riluzole-sensitive slowly inactivating sodium current in rat suprachiasmatic nucleus neurons, J. Neurophysiol., 91, 710, 10.1152/jn.00770.2003 Kudo, 2011, Circadian dysfunction in a mouse model of Parkinson's disease, Exp. Neurol., 232, 66, 10.1016/j.expneurol.2011.08.003 Kuhlman, 2004, Rhythmic regulation of membrane potential and potassium current persists in SCN neurons in the absence of environmental input, Eur. J. Neurosci., 20, 1113, 10.1111/j.1460-9568.2004.03555.x Kumar, 2009, Susceptibility to calcium dysregulation during brain aging, Front. Aging Neurosci., 1, 2, 10.3389/neuro.24.002.2009 Li, 2014, Nuclear BK channels regulate gene expression via the control of nuclear calcium signaling, Nat. Neurosci., 17, 1055, 10.1038/nn.3744 Lin, 2014, Characteristics of single large-conductance Ca2+-activated K+ channels and their regulation of action potentials and excitability in parasympathetic cardiac motoneurons in the nucleus ambiguus, Am. J. Physiol. Cell Physiol., 306, C152, 10.1152/ajpcell.00423.2012 Lovell, 2001, Pituitary control of BK potassium channel function and intrinsic firing properties of adrenal chromaffin cells, J. Neurosci., 21, 3429, 10.1523/JNEUROSCI.21-10-03429.2001 Ly, 2011, Phase-resetting curve determines how BK currents affect neuronal firing, J. Comput. Neurosci., 30, 211, 10.1007/s10827-010-0246-3 Meredith, 2006, BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output, Nat. Neurosci., 9, 1041, 10.1038/nn1740 Miranda, 2003, Role of BK potassium channels shaping action potentials and the associated [Ca(2+)](i) oscillations in GH(3) rat anterior pituitary cells, Neuroendocrinology, 77, 162, 10.1159/000069509 Montgomery, 2012, Genetic activation of BK currents in vivo generates bidirectional effects on neuronal excitability, Proc. Natl. Acad. Sci. U. S. A., 109, 18997, 10.1073/pnas.1205573109 Montgomery, 2013, Mis-expression of the BK K(+) channel disrupts suprachiasmatic nucleus circuit rhythmicity and alters clock-controlled behavior, Am. J. Physiol. Cell Physiol., 304, C299, 10.1152/ajpcell.00302.2012 Morton, 2005, Disintegration of the sleep-wake cycle and circadian timing in Huntington's disease, J. Neurosci., 25, 157, 10.1523/JNEUROSCI.3842-04.2005 Muller, 2007, Nanodomains of single Ca2+ channels contribute to action potential repolarization in cortical neurons, J. Neurosci., 27, 483, 10.1523/JNEUROSCI.3816-06.2007 Muller, 1996, Free intracellular calcium in aging and Alzheimer's disease, Ann. N. Y. Acad. Sci., 786, 305, 10.1111/j.1749-6632.1996.tb39073.x Nakamura, 2011, Age-related decline in circadian output, J. Neurosci., 31, 10201, 10.1523/JNEUROSCI.0451-11.2011 Pedroarena, 2011, BK and Kv3.1 potassium channels control different aspects of deep cerebellar nuclear neurons action potentials and spiking activity, Cerebellum, 10, 647, 10.1007/s12311-011-0279-9 Pennartz, 2002, Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock, Nature, 416, 286, 10.1038/nature728 Pitts, 2006, Daily rhythmicity of large-conductance Ca2+ -activated K+ currents in suprachiasmatic nucleus neurons, Brain Res., 1071, 54, 10.1016/j.brainres.2005.11.078 Satinoff, 1993, Do the suprachiasmatic nuclei oscillate in old rats as they do in young ones?, Am. J. Physiol., 265, R1216 Sausbier, 2004, Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency, Proc. Natl. Acad. Sci. U. S. A., 101, 9474, 10.1073/pnas.0401702101 Sellix, 2012, Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators, J. Neurosci., 32, 16193, 10.1523/JNEUROSCI.3559-12.2012 Shao, 1999, The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells, J. Physiol., 521, 135, 10.1111/j.1469-7793.1999.00135.x Smith, 2002, Regulation of firing response gain by calcium-dependent mechanisms in vestibular nucleus neurons, J. Neurophysiol., 87, 2031, 10.1152/jn.00821.2001 Sterniczuk, 2010, Characterization of the 3xTg-AD mouse model of Alzheimer's disease: part 1. Circadian changes, Brain Res., 1348, 139, 10.1016/j.brainres.2010.05.013 Tabak, 2011, Fast-activating voltage- and calcium-dependent potassium (BK) conductance promotes bursting in pituitary cells: a dynamic clamp study, J. Neurosci., 31, 16855, 10.1523/JNEUROSCI.3235-11.2011 Toescu, 2010, Calcium and normal brain ageing, Cell Calcium, 47, 158, 10.1016/j.ceca.2009.11.013 vanderLeest, 2009, Phase of the electrical activity rhythm in the SCN in vitro not influenced by preparation time, Chronobiol. Int., 26, 1075, 10.3109/07420520903227746 Van Goor, 2001, Paradoxical role of large-conductance calcium-activated K+ (BK) channels in controlling action potential-driven Ca2+ entry in anterior pituitary cells, J. Neurosci., 21, 5902, 10.1523/JNEUROSCI.21-16-05902.2001 Van Someren, 2000, Circadian and sleep disturbances in the elderly, Exp. Gerontol., 35, 1229, 10.1016/S0531-5565(00)00191-1 Williams, 2011, Paradoxical function of orexin/hypocretin circuits in a mouse model of Huntington's disease, Neurobiol. Dis., 42, 438, 10.1016/j.nbd.2011.02.006 Willison, 2013, Circadian dysfunction may be a key component of the non-motor symptoms of Parkinson's disease: insights from a transgenic mouse model, Exp. Neurol., 243, 57, 10.1016/j.expneurol.2013.01.014 Womack, 2009, Large conductance calcium-activated potassium channels affect both spontaneous firing and intracellular calcium concentration in cerebellar Purkinje neurons, Neuroscience, 162, 989, 10.1016/j.neuroscience.2009.05.016 Womack, 2002, Characterization of large conductance Ca2+-activated K+ channels in cerebellar Purkinje neurons, Eur. J. Neurosci., 16, 1214, 10.1046/j.1460-9568.2002.02171.x