Ag4Hg(SeO3)2(SeO4): a novel SHG material created in mixed valent selenium oxides by in situ synthesis
Tóm tắt
Explorations of new second harmonic generation materials in Ag+-Hg2+/Bi3+-selenites systems afforded three new silver selenium oxides, namely, Ag4Hg(SeO3)2(SeO4) (1), Ag2Bi2(SeO3)3(SeO4) (2) and Ag5Bi(SeO3)4 (3). They exhibit flexible crystal chemistry. Compounds 1 and 2 are mixed valence selenium oxides containing Se(IV) and Se(VI) cations simultaneously. Compounds 1 and 3 exhibit a 3D open framework with 4-, 6- and 8-member polyhedral ring tunnels along a, b and c axes. Compound 1 crystallized in a polar space group and could display a subtle frequency doubling efficiency about 35% of the commercial KH2PO4 (KDP). UV-vis-NIR spectra reveal that compounds 1–3 are wide-band semiconductors with the optical bandgaps of 3.11, 3.65, 3.58 eV respectively. Theoretical calculations disclose that compounds 2 and 3 are indirect band gap structures and their bandgaps are determined by Ag, Bi, Se and O atoms together.
Tài liệu tham khảo
Shi G, Wang Y, Zhang F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J Am Chem Soc, 2017, 139: 10645–10648
Kang L, Zhang X, Liang F, et al. Poly(difluorophosphazene) as the first deep-ultraviolet nonlinear optical polymer: a first-principles prediction. Angew Chem Int Ed, 2019, 58: 10250–10254
Guo SP, Chi Y, Xue HG. SnI4·(S8)2: A novel adduct-type infrared second-order nonlinear optical crystal. Angew Chem Int Ed, 2018, 57: 11540–11543
Xie Z, Wang Y, Cheng S, et al. Synthesis, characterization, and theoretical analysis of three new nonlinear optical materials K7MRE2B15O30 (M= Ca and Ba, RE= La and Bi). Sci China Mater, 2019, 62: 1151–1161
Kim SH, Yeon J, Halasyamani PS. Noncentrosymmetric polar oxide material, Pb3SeO5: synthesis, characterization, electronic structure calculations, and structure-property relationships. Chem Mater, 2009, 21: 5335–5342
Bang S, Ok KM. Structure-directing effect of alkali metal cations in new molybdenum selenites, Na2Mo2O5(SeO3)2, K2Mo2O5(SeO3)2, and Rb2Mo3O7(SeO3)3. Inorg Chem, 2015, 54: 8832–8839
Xia Z, Poeppelmeier KR. Chemistry-inspired adaptable framework structures. Acc Chem Res, 2017, 50: 1222–1230
Harrison WTA, Dussack LL, Jacobson AJ. Syntheses, crystal structures, and properties of new layered molybdenum(VI) selenites: (NH4)2(MoO3)3SeO3 and Cs2(MoO3)3SeO3. Inorg Chem, 1994, 33: 6043–6049
Nguyen SD, Kim SH, Halasyamani PS. Synthesis, characterization, and structure-property relationships in two new polar oxides: Zn2(MoO4)(SeO3) and Zn2(MoO4)(TeO3). Inorg Chem, 2011, 50: 5215–5222
Cao XL, Hu CL, Xu X, et al. Pb2TiOF(SeO3)2Cl and Pb2NbO2-(SeO3)2Cl: small changes in structure induced a very large SHG enhancement. Chem Commun, 2013, 49: 9965–9967
Liang ML, Hu CL, Kong F, et al. BiFSeO3: An excellent SHG material designed by aliovalent substitution. J Am Chem Soc, 2016, 138: 9433–9436
You F, Liang F, Huang Q, et al. Pb2GaF2(SeO3)2Cl: band engineering strategy by aliovalent substitution for enlarging bandgap while keeping strong second harmonic generation response. J Am Chem Soc, 2019, 141: 748–752
Ma YX, Hu CL, Li BX, et al. PbCdF(SeO3)(NO3): A nonlinear optical material produced by synergistic effect of four functional units. Inorg Chem, 2018, 57: 11839–11846
Yu H, Nisbet ML, Poeppelmeier KR. Assisting the effective design of polar iodates with early transition-metal oxide fluoride anions. J Am Chem Soc, 2018, 140: 8868–8876
Zhang X, Wu H, Yu H, et al. Ba4M(CO3)2(BO3)2 (M=Ba, Sr): two borate-carbonates synthesized by open high temperature solution method. Sci China Mater, 2019, 62: 1023–1032
Yu H, Koocher NZ, Rondinelli JM, et al. Pb2BO3I: a borate iodide with the largest second-harmonic generation (SHG) response in the KBe2BO3F2 (KBBF) family of nonlinear optical (NLO) materials. Angew Chem Int Ed, 2018, 57: 6100–6103
Dong X, Huang L, Hu C, et al. CsSbF2SO4: an excellent ultraviolet nonlinear optical sulfate with a KTiOPO4 (KTP)-type structure. Angew Chem Int Ed, 2019, 58: 6528–6534
Lee DW, Bak D, Kim SB, et al. Effect of the framework flexibility on the centricities in centrosymmetric In2Zn(SeO3)4 and non-centrosymmetric Ga2Zn(TeO3)4. Inorg Chem, 2012, 51: 7844–7850
Kong F, Huang SP, Sun ZM, et al. Se2(B2O7): a new type of second-order NLO material. J Am Chem Soc, 2006, 128: 7750–7751
Kong F, Xu X, Mao JG. A series of new ternary and quaternary compounds in the LiI-GaIII-TeIV-O system. Inorg Chem, 2010, 49: 11573–11580
Gong YP, Ma YX, Ying SM, et al. Two indium sulfate tellurites: centrosymmetric In2(SO4)(TeO3)(OH)2(H2O) and non-centrosymmetric In3(SO4)(TeO3)2F3(H2O). Inorg Chem, 2019, 58: 11155–11163
He F, Wang L, Hu C, et al. Cation-tuned synthesis of the A2SO4. SbF3 (A = Na+, NH4 +, K+, Rb+) family with nonlinear optical properties. Dalton Trans, 2018, 47: 17486–17492
Morris RE, Wilkinson AP, Cheetham AK. A novel mixed-valence selenium(IV)/selenium(VI) oxo compound: crystal structure determination and X-ray absorption near edge structure study of erbium selenite(IV) selenate(VI) hydrate, Er(SeO3)(SeO4)1/2·H2O. Inorg Chem, 1992, 31: 4774–4777
Weil M. The crystal structures of Hg7Se3O13H2 and Hg8Se4O17H2—two mixed-valent mercury oxoselenium compounds with a multifarious crystal chemistry. Z für Kristallographie-Crystline Mater, 2004, 219: 621–629
Weil M, Kolitsch U. Hg3Se3O10, a mercury(II) compound with mixed-valence oxoselenium(IV/VI) anions. Acta Cryst, 2002, 58: i47–i49
Wickleder MS, Büchner O, Wickleder C, et al. Au2(SeO3)2(SeO4): Synthesis and characterization of a new noncentrosymmetric selenite-selenate. Inorg Chem, 2004, 43: 5860–5864
Lee EP, Song SY, Lee DW, et al. New bismuth selenium oxides: syntheses, structures, and characterizations of centrosymmetric Bi2(SeO3)2(SeO4) and Bi2(TeO3)2(SeO4) and noncentrosymmetric Bi(SeO3)(HSeO3). Inorg Chem, 2013, 52: 4097–4103
Baran J, Lis T, Marchewka M, et al. Structure and polarized IR and Raman spectra of Na2SeO4·H2SeO3·H2O crystal. J Mol Structure, 1991, 250: 13–45
Zak Z. Crystal structure of diselenium pentoxide Se2O5. Z Anorg Allg Chem, 1980, 460: 81–85
Giester G. Crystal structure of Li2Cu3(SeO3)2(SeO4)2. Monatshefte für Chemie, 1989, 120: 661–666
Effenberger H. Crystal structure and chemical formula of schmiederite, Pb2Cu2(OH)4(SeO3)(SeO4), with a comparison to linarite, PbCu(OH)2(SO4). Miner Petrol, 1987, 36: 3–12
Ling J, Albrecht-Schmitt TE. Syntheses, structures, and properties of Ag4(Mo2O5)(SeO4)2(SeO3) and Ag2(MoO3)3SeO3. J Solid State Chem, 2007, 180: 1601–1607
Maggard PA, Nault TS, Stern CL, et al. Alignment of acentric MoO3F3 3− anions in a polar material: (Ag3MoO3F3)(Ag3MoO4)Cl. J Solid State Chem, 2003, 175: 27–33
Qian Q, Kong F, Mao JG. A series of new silver selenites with d0-TM cations. RSC Adv, 2016, 6: 79681–79687
Gong YP, Hu CL, Kong F, et al. Exploration of new birefringent crystals in bismuth d0 transition metal selenites. Chem Eur J, 2019, 25: 3685–3694
Wu BL, Hu CL, Mao FF, et al. Highly polarizable Hg2+ induced a strong second harmonic generation signal and large birefringence in LiHgPO4. J Am Chem Soc, 2019, 141: 10188–10192
Shi S, Luo M, Lin C, et al. A cation size effect on the framework structures in ABi2SeO3F5 (A = K and Rb): first examples of alkali metal bismuth selenite fluorides. Dalton Trans, 2018, 47: 6598–6604
Kurtz SK, Perry TT. A powder technique for the evaluation of nonlinear optical materials. J Appl Phys, 1968, 39: 3798–3813
Anonymous. Crystal Clear, version 1.3.5, Rigaku Corp, Woodlands, TX, 1999
Sheldrick GM. SHELXTL: crystallographic software package, version 5.1, Bruker-AXS, Madison, WI, 1998
Spek AL. Single-crystal structure validation with the program PLATON. J Appl Crystlogr, 2003, 36: 7–13
Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys-Condens Matter, 2002, 14: 2717–2744
Brese NE, O’Keeffe M. Bond-valence parameters for solids. Acta Crystlogr B Struct Sci, 1991, 47: 192–197
Brown ID, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystlogr B Struct Sci, 1985, 41: 244–247
Zhou Y, Hu CL, Hu T, et al. Explorations of new second-order NLO materials in the AgI-MoVI/WVI-TeIV-O systems. Dalton Trans, 2009, 102: 5747–5754
Poe TN, White FD, Proust V, et al. [Ag2M(Te2O5)2]SO4 (M = CeIV or ThIV): A new purely inorganic d/f-heterometallic cationic material. Inorg Chem, 2018, 57: 4816–4819
Schmaltz B, Jouaiti A, Hosseini MW, et al. Double stranded interwound infinite linear silver coordination network. Chem Commun, 2001, 14: 1242–1243
Lian ZX, Cai J, Chen CH, et al. Linear silver isonicotinamide complex extended by arenedisulfonate via hydrogen bonds and weak Ag⋯O interactions. CrystEngComm, 2007, 9: 319–327
Khlobystov AN, Blake AJ, Champness NR, et al. Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands. Coord Chem Rev, 2001, 222: 155–192
Ma YX, Gong YP, Hu C, et al. Three new d10 transition metal selenites containing PO4 tetrahedron: Cd7(HPO4)2(PO4)2(SeO3)2, Cd6(PO4)1.34(SeO3)4.66 and Zn3(HPO4)(SeO3)2(H2O). J Solid State Chem, 2018, 262: 320–326
Weil M, Shirkanlou M. Hydrothermal Studies in the system Hg/Se/Te/O: The first TeIV/SeVI oxocompounds Hg3SeTe2O10 and Hg3SeTe4O14, and the Mixed-valent Hg5Se2O8. Z Anorg Allg Chem, 2015, 641: 1459–1466
Ina Krügermann, Wickleder MS. Pr4(SeO3)2(SeO4)F6 and NaSm-(SeO3)(SeO4): selenite-selenates of rare earth elements. Z Anorg Allg Chem, 2002, 628: 147–151
Weil M. Cd3Se3O10, isotypic with its mercury analogue. Acta Cryst, 2002, 58: i127–i129
Wu H, Yu H, Yang Z, et al. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. J Am Chem Soc, 2013, 135: 4215–4218
Mutailipu M, Zhang M, Zhang B, et al. SrB5O7F3 functionalized with [B5O9F3]6− chromophores: accelerating the rational design of deep-ultraviolet nonlinear optical materials. Angew Chem Int Ed, 2018, 57: 6095–6099
Gong P, Liang F, Kang L, et al. Recent advances and future perspectives on infrared nonlinear optical metal halides. Coord Chem Rev, 2019, 380: 83–102
Xu X, Hu CL, Li BX, et al. α-AgI3O8 and β-AgI3O8 with large SHG responses: polymerization of IO3 groups into the I3O8 polyiodate anion. Chem Mater, 2014, 26: 3219–3230