Ag4Hg(SeO3)2(SeO4): a novel SHG material created in mixed valent selenium oxides by in situ synthesis

Science China Materials - Tập 62 - Trang 1821-1830 - 2019
Xiao-Xue Wang1,2, Xiao-Bao Li1,2, Chun-Li Hu2, Fang Kong2, Jiang-Gao Mao2
1College of Chemistry, Fuzhou University, Fuzhou, China
2State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China

Tóm tắt

Explorations of new second harmonic generation materials in Ag+-Hg2+/Bi3+-selenites systems afforded three new silver selenium oxides, namely, Ag4Hg(SeO3)2(SeO4) (1), Ag2Bi2(SeO3)3(SeO4) (2) and Ag5Bi(SeO3)4 (3). They exhibit flexible crystal chemistry. Compounds 1 and 2 are mixed valence selenium oxides containing Se(IV) and Se(VI) cations simultaneously. Compounds 1 and 3 exhibit a 3D open framework with 4-, 6- and 8-member polyhedral ring tunnels along a, b and c axes. Compound 1 crystallized in a polar space group and could display a subtle frequency doubling efficiency about 35% of the commercial KH2PO4 (KDP). UV-vis-NIR spectra reveal that compounds 1–3 are wide-band semiconductors with the optical bandgaps of 3.11, 3.65, 3.58 eV respectively. Theoretical calculations disclose that compounds 2 and 3 are indirect band gap structures and their bandgaps are determined by Ag, Bi, Se and O atoms together.

Tài liệu tham khảo

Shi G, Wang Y, Zhang F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J Am Chem Soc, 2017, 139: 10645–10648 Kang L, Zhang X, Liang F, et al. Poly(difluorophosphazene) as the first deep-ultraviolet nonlinear optical polymer: a first-principles prediction. Angew Chem Int Ed, 2019, 58: 10250–10254 Guo SP, Chi Y, Xue HG. SnI4·(S8)2: A novel adduct-type infrared second-order nonlinear optical crystal. Angew Chem Int Ed, 2018, 57: 11540–11543 Xie Z, Wang Y, Cheng S, et al. Synthesis, characterization, and theoretical analysis of three new nonlinear optical materials K7MRE2B15O30 (M= Ca and Ba, RE= La and Bi). Sci China Mater, 2019, 62: 1151–1161 Kim SH, Yeon J, Halasyamani PS. Noncentrosymmetric polar oxide material, Pb3SeO5: synthesis, characterization, electronic structure calculations, and structure-property relationships. Chem Mater, 2009, 21: 5335–5342 Bang S, Ok KM. Structure-directing effect of alkali metal cations in new molybdenum selenites, Na2Mo2O5(SeO3)2, K2Mo2O5(SeO3)2, and Rb2Mo3O7(SeO3)3. Inorg Chem, 2015, 54: 8832–8839 Xia Z, Poeppelmeier KR. Chemistry-inspired adaptable framework structures. Acc Chem Res, 2017, 50: 1222–1230 Harrison WTA, Dussack LL, Jacobson AJ. Syntheses, crystal structures, and properties of new layered molybdenum(VI) selenites: (NH4)2(MoO3)3SeO3 and Cs2(MoO3)3SeO3. Inorg Chem, 1994, 33: 6043–6049 Nguyen SD, Kim SH, Halasyamani PS. Synthesis, characterization, and structure-property relationships in two new polar oxides: Zn2(MoO4)(SeO3) and Zn2(MoO4)(TeO3). Inorg Chem, 2011, 50: 5215–5222 Cao XL, Hu CL, Xu X, et al. Pb2TiOF(SeO3)2Cl and Pb2NbO2-(SeO3)2Cl: small changes in structure induced a very large SHG enhancement. Chem Commun, 2013, 49: 9965–9967 Liang ML, Hu CL, Kong F, et al. BiFSeO3: An excellent SHG material designed by aliovalent substitution. J Am Chem Soc, 2016, 138: 9433–9436 You F, Liang F, Huang Q, et al. Pb2GaF2(SeO3)2Cl: band engineering strategy by aliovalent substitution for enlarging bandgap while keeping strong second harmonic generation response. J Am Chem Soc, 2019, 141: 748–752 Ma YX, Hu CL, Li BX, et al. PbCdF(SeO3)(NO3): A nonlinear optical material produced by synergistic effect of four functional units. Inorg Chem, 2018, 57: 11839–11846 Yu H, Nisbet ML, Poeppelmeier KR. Assisting the effective design of polar iodates with early transition-metal oxide fluoride anions. J Am Chem Soc, 2018, 140: 8868–8876 Zhang X, Wu H, Yu H, et al. Ba4M(CO3)2(BO3)2 (M=Ba, Sr): two borate-carbonates synthesized by open high temperature solution method. Sci China Mater, 2019, 62: 1023–1032 Yu H, Koocher NZ, Rondinelli JM, et al. Pb2BO3I: a borate iodide with the largest second-harmonic generation (SHG) response in the KBe2BO3F2 (KBBF) family of nonlinear optical (NLO) materials. Angew Chem Int Ed, 2018, 57: 6100–6103 Dong X, Huang L, Hu C, et al. CsSbF2SO4: an excellent ultraviolet nonlinear optical sulfate with a KTiOPO4 (KTP)-type structure. Angew Chem Int Ed, 2019, 58: 6528–6534 Lee DW, Bak D, Kim SB, et al. Effect of the framework flexibility on the centricities in centrosymmetric In2Zn(SeO3)4 and non-centrosymmetric Ga2Zn(TeO3)4. Inorg Chem, 2012, 51: 7844–7850 Kong F, Huang SP, Sun ZM, et al. Se2(B2O7): a new type of second-order NLO material. J Am Chem Soc, 2006, 128: 7750–7751 Kong F, Xu X, Mao JG. A series of new ternary and quaternary compounds in the LiI-GaIII-TeIV-O system. Inorg Chem, 2010, 49: 11573–11580 Gong YP, Ma YX, Ying SM, et al. Two indium sulfate tellurites: centrosymmetric In2(SO4)(TeO3)(OH)2(H2O) and non-centrosymmetric In3(SO4)(TeO3)2F3(H2O). Inorg Chem, 2019, 58: 11155–11163 He F, Wang L, Hu C, et al. Cation-tuned synthesis of the A2SO4. SbF3 (A = Na+, NH4 +, K+, Rb+) family with nonlinear optical properties. Dalton Trans, 2018, 47: 17486–17492 Morris RE, Wilkinson AP, Cheetham AK. A novel mixed-valence selenium(IV)/selenium(VI) oxo compound: crystal structure determination and X-ray absorption near edge structure study of erbium selenite(IV) selenate(VI) hydrate, Er(SeO3)(SeO4)1/2·H2O. Inorg Chem, 1992, 31: 4774–4777 Weil M. The crystal structures of Hg7Se3O13H2 and Hg8Se4O17H2—two mixed-valent mercury oxoselenium compounds with a multifarious crystal chemistry. Z für Kristallographie-Crystline Mater, 2004, 219: 621–629 Weil M, Kolitsch U. Hg3Se3O10, a mercury(II) compound with mixed-valence oxoselenium(IV/VI) anions. Acta Cryst, 2002, 58: i47–i49 Wickleder MS, Büchner O, Wickleder C, et al. Au2(SeO3)2(SeO4): Synthesis and characterization of a new noncentrosymmetric selenite-selenate. Inorg Chem, 2004, 43: 5860–5864 Lee EP, Song SY, Lee DW, et al. New bismuth selenium oxides: syntheses, structures, and characterizations of centrosymmetric Bi2(SeO3)2(SeO4) and Bi2(TeO3)2(SeO4) and noncentrosymmetric Bi(SeO3)(HSeO3). Inorg Chem, 2013, 52: 4097–4103 Baran J, Lis T, Marchewka M, et al. Structure and polarized IR and Raman spectra of Na2SeO4·H2SeO3·H2O crystal. J Mol Structure, 1991, 250: 13–45 Zak Z. Crystal structure of diselenium pentoxide Se2O5. Z Anorg Allg Chem, 1980, 460: 81–85 Giester G. Crystal structure of Li2Cu3(SeO3)2(SeO4)2. Monatshefte für Chemie, 1989, 120: 661–666 Effenberger H. Crystal structure and chemical formula of schmiederite, Pb2Cu2(OH)4(SeO3)(SeO4), with a comparison to linarite, PbCu(OH)2(SO4). Miner Petrol, 1987, 36: 3–12 Ling J, Albrecht-Schmitt TE. Syntheses, structures, and properties of Ag4(Mo2O5)(SeO4)2(SeO3) and Ag2(MoO3)3SeO3. J Solid State Chem, 2007, 180: 1601–1607 Maggard PA, Nault TS, Stern CL, et al. Alignment of acentric MoO3F3 3− anions in a polar material: (Ag3MoO3F3)(Ag3MoO4)Cl. J Solid State Chem, 2003, 175: 27–33 Qian Q, Kong F, Mao JG. A series of new silver selenites with d0-TM cations. RSC Adv, 2016, 6: 79681–79687 Gong YP, Hu CL, Kong F, et al. Exploration of new birefringent crystals in bismuth d0 transition metal selenites. Chem Eur J, 2019, 25: 3685–3694 Wu BL, Hu CL, Mao FF, et al. Highly polarizable Hg2+ induced a strong second harmonic generation signal and large birefringence in LiHgPO4. J Am Chem Soc, 2019, 141: 10188–10192 Shi S, Luo M, Lin C, et al. A cation size effect on the framework structures in ABi2SeO3F5 (A = K and Rb): first examples of alkali metal bismuth selenite fluorides. Dalton Trans, 2018, 47: 6598–6604 Kurtz SK, Perry TT. A powder technique for the evaluation of nonlinear optical materials. J Appl Phys, 1968, 39: 3798–3813 Anonymous. Crystal Clear, version 1.3.5, Rigaku Corp, Woodlands, TX, 1999 Sheldrick GM. SHELXTL: crystallographic software package, version 5.1, Bruker-AXS, Madison, WI, 1998 Spek AL. Single-crystal structure validation with the program PLATON. J Appl Crystlogr, 2003, 36: 7–13 Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys-Condens Matter, 2002, 14: 2717–2744 Brese NE, O’Keeffe M. Bond-valence parameters for solids. Acta Crystlogr B Struct Sci, 1991, 47: 192–197 Brown ID, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystlogr B Struct Sci, 1985, 41: 244–247 Zhou Y, Hu CL, Hu T, et al. Explorations of new second-order NLO materials in the AgI-MoVI/WVI-TeIV-O systems. Dalton Trans, 2009, 102: 5747–5754 Poe TN, White FD, Proust V, et al. [Ag2M(Te2O5)2]SO4 (M = CeIV or ThIV): A new purely inorganic d/f-heterometallic cationic material. Inorg Chem, 2018, 57: 4816–4819 Schmaltz B, Jouaiti A, Hosseini MW, et al. Double stranded interwound infinite linear silver coordination network. Chem Commun, 2001, 14: 1242–1243 Lian ZX, Cai J, Chen CH, et al. Linear silver isonicotinamide complex extended by arenedisulfonate via hydrogen bonds and weak Ag⋯O interactions. CrystEngComm, 2007, 9: 319–327 Khlobystov AN, Blake AJ, Champness NR, et al. Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands. Coord Chem Rev, 2001, 222: 155–192 Ma YX, Gong YP, Hu C, et al. Three new d10 transition metal selenites containing PO4 tetrahedron: Cd7(HPO4)2(PO4)2(SeO3)2, Cd6(PO4)1.34(SeO3)4.66 and Zn3(HPO4)(SeO3)2(H2O). J Solid State Chem, 2018, 262: 320–326 Weil M, Shirkanlou M. Hydrothermal Studies in the system Hg/Se/Te/O: The first TeIV/SeVI oxocompounds Hg3SeTe2O10 and Hg3SeTe4O14, and the Mixed-valent Hg5Se2O8. Z Anorg Allg Chem, 2015, 641: 1459–1466 Ina Krügermann, Wickleder MS. Pr4(SeO3)2(SeO4)F6 and NaSm-(SeO3)(SeO4): selenite-selenates of rare earth elements. Z Anorg Allg Chem, 2002, 628: 147–151 Weil M. Cd3Se3O10, isotypic with its mercury analogue. Acta Cryst, 2002, 58: i127–i129 Wu H, Yu H, Yang Z, et al. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. J Am Chem Soc, 2013, 135: 4215–4218 Mutailipu M, Zhang M, Zhang B, et al. SrB5O7F3 functionalized with [B5O9F3]6− chromophores: accelerating the rational design of deep-ultraviolet nonlinear optical materials. Angew Chem Int Ed, 2018, 57: 6095–6099 Gong P, Liang F, Kang L, et al. Recent advances and future perspectives on infrared nonlinear optical metal halides. Coord Chem Rev, 2019, 380: 83–102 Xu X, Hu CL, Li BX, et al. α-AgI3O8 and β-AgI3O8 with large SHG responses: polymerization of IO3 groups into the I3O8 polyiodate anion. Chem Mater, 2014, 26: 3219–3230