Vải nylon phủ bạc như là các chất nền linh hoạt cho ứng dụng lấy mẫu phân tích Raman tăng cường bề mặt

Journal of Materials Research - Tập 35 - Trang 1271-1278 - 2020
Airong Liu1, Shuo Zhang1, Shanyi Guang1, Fengyan Ge1, Juan Wang2
1Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
2School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China

Tóm tắt

Một chất nền tăng cường Raman bề mặt (SERS) linh hoạt đã được chế tạo bằng cách bay hơi chân không bạc trên bề mặt của vải nylon dệt. Các đặc tính SERS của vải nylon phủ bạc thay đổi theo độ dày của lớp bạc, tương ứng với hình thái và phân bố của các hạt nano bạc (NPs) trên sợi. Hiệu suất tăng cường SERS của vải nylon phủ bạc đã được đánh giá bằng cách thu thập tín hiệu Raman của các nồng độ khác nhau của p-aminothiophenol (PATP). Kết quả cho thấy rằng vải nylon phủ bạc với độ dày 10 nm có hoạt tính SERS cao và nồng độ phát hiện cho PATP thấp tới 10−9 M. Hơn nữa, các tín hiệu SERS nhạy cảm với độ tái lập tuyệt vời (Độ lệch chuẩn tương đối = 8,25%) và độ ổn định (30 ngày) đã được chứng minh. Ngoài ra, các vải nylon SERS đã được áp dụng để phát hiện nhanh thuốc trừ sâu thiram trên dưa chuột, điều này cho thấy tiềm năng lớn cho phân tích dấu vết.

Từ khóa

#Vải nylon #phủ bạc #tăng cường Raman bề mặt #thuốc trừ sâu #thiram #phân tích dấu vết

Tài liệu tham khảo

J.F. Li, Y.J. Zhang, S.Y. Ding, R. Panneerselvam, and Z.Q. Tian: Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 117, 5002 (2017). J. Liu, T. Si, and Z. Zhang: Mussel-inspired immobilization of silver nanoparticles toward sponge for rapid swabbing extraction and SERS detection of trace inorganic explosives. Talanta 204, 189 (2019). R. Shi, X. Liu, and Y. Ying: Facing challenges in real-life application of surface-enhanced Raman scattering (SERS): Design and nanofabrication of SERS substrates for rapid field test of food contaminants. J. Agric. Food Chem. 66, 6525 (2017). T. Xu, X. Wang, Y. Huang, K. Lai, and Y. Fan: Rapid detection of trace methylene blue and malachite green in four fish tissues by ultra-sensitive surface-enhanced Raman spectroscopy coated with gold nanorods. Food Contr. 106, 106720 (2019). H. Ko, S. Singamaneni, and V.V. Tsukruk: Nanostructured surfaces and assemblies as SERS media. Small 4, 1576 (2010). K. Xu, R. Zhou, K. Takei, and M. Hong: Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 6, 1900925 (2019). E.S. Prikhozhdenko, D.N. Bratashov, D.A. Gorin, and A.M. Yashchenok: Flexible surface-enhanced Raman scattering-active substrates based on nanofibrous membranes. Nano Res. 11, 1 (2018). E.P. Hoppmann, W.Y. Wei, and I.M. White: Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods 63, 219 (2013). M.B. Ross, M.J. Ashley, A.L. Schmucker, S. Singamaneni, R.R. Naik, G.C. Schatz, and C.A. Mirkin: Structure–function relationships for surface-enhanced Raman spectroscopy-active plasmonic paper. J. Phys. Chem. C 120, 20789 (2016). C. Wang, B. Liu, and X. Dou: Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges. Sens. Actuators, B 231, 357 (2016). R. Zhang, B.B. Xu, X.Q. Liu, Y.L. Zhang, Y. Xu, Q.D. Chen, and H.B. Sun: Highly efficient SERS test strips. Chem. Commun. 48, 5913 (2012). C. Chen, Y. Tang, B. Vlahovic, and F. Yan: Electrospun polymer nanofibers decorated with noble metal nanoparticles for chemical sensing. Nanoscale Res. Lett. 12, 451 (2017). Z. Liu, Z. Yan, J. Lu, S. Ping, L. Mei, B. Lu, and Y. Liu: Gold nanoparticle decorated electrospun nanofibers: A 3D reproducible and sensitive SERS substrate. Appl. Surf. Sci. 403, 29 (2017). D.R. Ballerini, H.N. Ying, G. Garnier, B.P. Ladewig, S. Wei, and P. Jarujamrus: Gold nanoparticle-functionalized thread as a substrate for SERS study of analytes both bound and unbound to gold. AIChE J. 60, 1598 (2014). L. Cai, Z. Deng, J. Dong, S. Song, Y. Wang, and X. Chen: Fabrication of non-woven fabric-based SERS substrate for direct detection of pesticide residues in fruits. J. Test. Eval. 1, 322 (2017). P.K. Duy, P.T.H. Yen, S. Chun, V.T.T. Ha, and H. Chung: Carbon fiber cloth-supported Au nanodendrites as a rugged surface-enhanced Raman scattering substrate and electrochemical sensing platform. Sens. Actuators, B 225, 377 (2016). F. Ge, Y. Chen, A. Liu, S. Guang, and Z. Cai: Flexible and recyclable SERS substrate fabricated by decorated TiO2 film with Ag NPs on the cotton fabric. Cellulose 26, 2689 (2019). J. Liu, J. Zhou, B. Tang, T. Zeng, Y. Li, J. Li, Y. Ye, and X. Wang: Surface enhanced Raman scattering (SERS) fabrics for trace analysis. Appl. Surf. Sci. 386, 296 (2016). Z. Gong, H. Du, F. Cheng, C. Wang, C. Wang, and M. Fan: Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl. Mater. Interfaces 6, 21931 (2014). L.L. Qu, Y.Y. Geng, Z.N. Bao, S. Riaz, and H. Li: Silver nanoparticles on cotton swabs for improved surface-enhanced Raman scattering, and its application to the detection of carbaryl. Microchim. Acta 183, 1307 (2016). F.M. Kelly and J.H. Johnston: Colored and functional silver nanoparticle-wool fiber composites. ACS Appl. Mater. Interfaces 3, 1083 (2011). B. Tang, L. Sun, J. Kaur, Y. Yu, and X. Wang: In-situ synthesis of gold nanoparticles for multifunctionalization of silk fabrics. Dyes Pigm. 103, 183 (2014). A.M. Robinson, Z. Lili, M.Y. Shah Alam, B. Paridhi, S.G. Harroun, D. Dhananjaya, B. Jonathan, and C.L. Brosseau: The development of “fab-chips” as low-cost, sensitive surface-enhanced Raman spectroscopy (SERS) substrates for analytical applications. Analyst 140, 779 (2015). Y. Chen, F. Ge, S. Guang, and Z. Cai: Self-assembly of Ag nanoparticles on the woven cotton fabrics as mechanical flexible substrates for surface enhanced Raman scattering. J. Alloys Compd. 726, 484 (2017). Y. Chen, F. Ge, S. Guang, and Z. Cai: Low-cost and large-scale flexible SERS-cotton fabric as a wipe substrate for surface trace analysis. Appl. Surf. Sci. 436, 111 (2018). D. Cheng, M. He, J. Ran, G. Cai, J. Wu, and X. Wang: Depositing a flexible substrate of triangular silver nanoplates onto cotton fabrics for sensitive SERS detection. Sens. Actuators, B 270, 508 (2018). X.M. Lin, Y. Cui, Y.H. Xu, B. Ren, and Z.Q. Tian: Surface-enhanced Raman spectroscopy: Substrate-related issues. Anal. Bioanal. Chem. 394, 1729 (2009). M. Fan, Z. Zhang, J. Hu, F. Cheng, C. Wang, C. Tang, J. Lin, A.G. Brolo, and H. Zhan: Ag decorated sandpaper as flexible SERS substrate for direct swabbing sampling. Mater. Lett. 133, 57 (2014). Z. Li, M. Wang, Y. Jiao, A. Liu, S. Wang, C. Zhang, C. Yang, Y. Xu, C. Li, and B. Man: Different number of silver nanoparticles layers for surface enhanced Raman spectroscopy analysis. Sens. Actuators, B 255, 374 (2018). E.C.L. Ru, E.J. Blackie, M. Meyer, and P.G. Etchegoin: Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 111, 13794 (2007). Z. Wang, M. Li, W. Wang, M. Fang, Q. Sun, and C. Liu: Floating silver film: A flexible surface-enhanced Raman spectroscopy substrate for direct liquid phase detection at gas-liquid interfaces. Nano Res. 9, 1148 (2016). H. Sun, H. Liu, and Y. Wu: A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice. Appl. Surf. Sci. 416, 704 (2017).