Ag-TiNx electrodes deposited on piezoelectric poly(vinylidene fluoride) for biomedical sensor applications

Sensors and Actuators A: Physical - Tập 234 - Trang 1-8 - 2015
S.M. Marques1, N.K. Manninen2, S. Lanceros-Mendez3, S. Carvalho1,2
1GRF-CFUM, Physics Department, University of Minho, 4800-058 Guimarães, Portugal
2SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra, Portugal
3Physics Department, University of Minho, 4700-057 Braga, Portugal

Tài liệu tham khảo

Oliveira, 2008, XRD and FTIR analysis of Ti-Si-C-ON coatings for biomedical applications, Surf. Coat. Technol., 203, 490, 10.1016/j.surfcoat.2008.06.121 Sánchez-López, 2012, Influence of silver content on the tribomechanical behavior on Ag-TiCN bioactive coatings, Surf. Coat. Technol., 206, 2192, 10.1016/j.surfcoat.2011.09.059 Branemark, 2001, Osseointegration in skeletal reconstruction and rehabilitation, J. Rehab. Res. Dev., 38, 1 Mohanty, 2006, Biosensors: a tutorial review, Potentials IEEE, 25, 35, 10.1109/MP.2006.1649009 Correia, 2013, Piezoresistive sensors for force mapping of hip-prostheses, Sens. Actuators A Phys., 195, 133, 10.1016/j.sna.2013.03.013 Alpuim, 2011, Piezoresistive silicon thin film sensor array for biomedical applications, Thin Solid Films, 519, 4574, 10.1016/j.tsf.2011.01.300 Correia, 2013, Development of inkjet printed strain sensors, Smart Mater. Struct., 22, 105028, 10.1088/0964-1726/22/10/105028 Nunes-Pereira, 2013, Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites, Sens. Actuators A Phys., 196, 55, 10.1016/j.sna.2013.03.023 Rocha, 2010, Energy Harvesting From Piezoelectric Materials Fully Integrated in Footwear, Ind. Electron. IEEE Trans., 57, 813, 10.1109/TIE.2009.2028360 Gregorio, 2000, Morphology and phase transition of high melt temperature crystallized poly (vinylidene fluoride), J. Mater. Sci., 35, 299, 10.1023/A:1004737000016 Martins, 2014, Electroactive phases of poly(vinylidene fluoride): determination, processing and applications, Prog. Polym. Sci., 39, 683, 10.1016/j.progpolymsci.2013.07.006 Tiwari, 2009, Radiation-resistant behavior of poly(vinylidene fluoride)/layered silicate nanocomposites, ACS Appl. Mater. Interfaces, 1, 311, 10.1021/am800040q Tavares, 2008, PVD-Grown photocatalytic TiO2 thin films on PVDF substrates for sensors and actuators applications, Thin Solid Films, 517, 1161, 10.1016/j.tsf.2008.06.024 Marques, 2011, X-ray scattering experiments on sputtered titanium dioxide coatings onto PVDF polymers for self-cleaning applications, J. Appl. Polym. Sci., 119, 726, 10.1002/app.32744 Lopes, 2013, TiAgx thin films for lower limb prosthesis pressure sensors: Effect of composition and structural changes on the electrical and thermal response of the films, Appl. Surf. Sci, 285, 10, 10.1016/j.apsusc.2013.07.021 Marques, 2014, Ti1-xAgx electrodes deposited on polymer based sensors, Appl. Surf. Sci., 317, 490, 10.1016/j.apsusc.2014.08.142 Wang, 2010, Microstructures and electrical conductance of silver nanocrystalline thin films on flexible polymer substrates, Surf. Coat. Technol., 204, 1206, 10.1016/j.surfcoat.2009.10.030 Adochite, 2012, The influence of annealing treatments on the properties of Ag:TiO2 nanocomposite films prepared by magnetron sputtering, Appl. Surf. Sci, 258, 4028, 10.1016/j.apsusc.2011.12.095 Pedrosa, 2014, Electrochemical behaviour of nanocomposite Agx:TiN thin films for dry biopotential electrodes, Electrochim. Acta, 125, 48, 10.1016/j.electacta.2014.01.082 Pedrosa, 2013, Nanocomposite Ag: TiN thin films for dry biopotential electrodes, Appl. Surf. Sci., 285, 40, 10.1016/j.apsusc.2013.07.154 Cao, 2011, Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects, Biomaterials, 32, 693, 10.1016/j.biomaterials.2010.09.066 Kelly, 2009, A study of the antimicrobial and tribological properties of TiN/Ag nanocomposite coatings, Surf. Coat. Technol., 204, 1137, 10.1016/j.surfcoat.2009.05.012 Alves, 2014, Influence of albumin on the tribological behavior of Ag–Ti (C, N) thin films for orthopedic implants, Mater. Sci. Eng. C, 34, 22, 10.1016/j.msec.2013.09.031 Eby, 2009, Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments, ACS Appl. Mater. Interfaces, 1, 1553, 10.1021/am9002155 Kelly, 2010, Comparison of the tribological and antimicrobial properties of CrN/Ag, ZrN/Ag, TiN/Ag, and TiN/Cu nanocomposite coatings, Surf. Coat. Technol, 205, 1606, 10.1016/j.surfcoat.2010.07.029 Safi, 2000, Recent aspects concerning DC reactive magnetron sputtering of thin films: a review, Surf. Coat. Technol, 127, 203, 10.1016/S0257-8972(00)00566-1 Depla, 2009, Magnetron sputter deposition: linking discharge voltage with target properties, Thin Solid Films, 517, 2825, 10.1016/j.tsf.2008.11.108 Konstantinidis, 2003, RF amplified magnetron source for efficient titanium nitride deposition, Surf. Coatings Technol, 174-175, 100, 10.1016/S0257-8972(03)00528-0 Manninen, 2011, Ag-Ti(C, N)-based coatings for biomedical applications: influence of silver content on the structural properties, J. Phys. D Appl. Phys., 44, 375501, 10.1088/0022-3727/44/37/375501 Spencer, 1988, Pressure stability in reactive magnetron sputtering, Thin Solid Films, 158, 141, 10.1016/0040-6090(88)90310-0 Meschel, 2003, Thermochemistry of some binary alloys of noble metals (Cu, Ag, Au) and transition metals by high temperature direct synthesis calorimetry, J. Alloys Compd., 350, 205, 10.1016/S0925-8388(02)00983-0 Li, 2005, Experimental study and thermodynamic assessment of the Ag-Ti system, Comput. Coupling Phase Thermochem., 29, 269, 10.1016/j.calphad.2005.09.002 Zeng, 2015, Critical assessment and thermodynamic modeling of the Ti-N system, Zeitschrift Für Met., 87, 540 Tan, 2010, High temperature interfacial reactions of TiC, ZrC, TiN, and ZrN with palladium, Solid State Ionics, 181, 1156, 10.1016/j.ssi.2010.06.054 de los Arcos, 2002, Preparation and characterization of TiN?Ag nanocomposite films, Vacuum, 67, 463, 10.1016/S0042-207X(02)00232-4 Escobar Galindo, 2013, Advanced surface characterization of silver nanocluster segregation in Ag-TiCN bioactive coatings by RBS, GDOES, and ARXPS, Anal. Bioanal. Chem., 405, 6259, 10.1007/s00216-013-7058-z Chakravadhanula, 2012, Surface segregation in TiO2-based nanocomposite thin films, Nanotechnology, 23, 495701, 10.1088/0957-4484/23/49/495701 Silva, 2011, Degradation of the dielectric and piezoelectric response of β-poly(vinylidene fluoride) after temperature annealing, J. Polym. Res., 18, 1451, 10.1007/s10965-010-9550-x Gomes, 2010, Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride), Smart Mater. Struct., 19, 65010, 10.1088/0964-1726/19/6/065010