Aflibercept clearance through the drainage system in a rat model

Yariv Keshet1, Orly Gal-Or1, Michal Schaap Fogler1, Karin Mimouni1, Meydan Ben Ishai1, Dov Weinberger1, Assaf Dotan1
1Department of Ophthalmology, Rabin Medical Center, Petach Tikva, Israel

Tóm tắt

Abstract Background As intravitreal anti-VEGF injections became the mainstay of treatment for many retinal diseases, the cause of a secondary sustained elevated intraocular pressure is still unclear. The aim of our study was to study the clearance of Aflibercept from the anterior chamber angle, in a rat model, to test if an aggregation exists. Methods Choroidal neovascular lesions (CNV) were induced in the right eye of 12 brown Norway rats, using indirect laser ophthalmoscope. Intravitreal Aflibercept injection (0.12 mg/3 µl) was performed 3 days after CNV induction. Rats were euthanized at predetermine time intervals of 3, 6, 24 and 48 h post injection, with immediate enucleation for histological analysis with H&E and immunofluorescence staining. Aflibercept molecules were stained with red fluorescence thanks to the formation of the immune complex Aflibercept-Rabbit anti human IgG-Anti rabbit antibodies-Cy3. Results Immediately after the injection, a strong fluorescence signal was detected, indicating the presence of Aflibercept in the iridocorneal angle. At 3- and 6-h interval a strong signal of Aflibercept was still seen. Six hours post injection, the signal was highly concentrated in Schlemm’s canal. In the 2 eyes harvested 24 h post Aflibercept injection, red fluorescence signal intensity was decreased in one eye, occupying mainly intra scleral venous plexuses, and absent in the other eye. At 48 h there was no fluorescence signal, confirming complete clearance of Aflibercept. Conclusions In our rat model, a complete clearance of Aflibercept from the anterior chamber angle, was seen 48 h after the injection. This finding refutes the theory of possible connection between IOP elevation and mechanical obstruction. Evacuation time of Aflibercept through the angle is of the same magnitude as that of Bevacizumab in the same rat model.

Từ khóa


Tài liệu tham khảo

Bressler NM. Antiangiogenic approaches to age-related macular degeneration today. Ophthalmology. 2009;116:S15–23. https://doi.org/10.1016/j.ophtha.2009.06.048.

Spaide RF, Fisher YL. Intravitreal bevacizumab (Avastin) treatment of proliferative diabetic retinopathy complicated by vitreous hemorrhage. Retina. 2006;26:275–8.

Ehlers JP, Kim SJ, Yeh S, Thorne JE, Mruthyunjaya P, Schoenberger SD, et al. Therapies for macular edema associated with branch retinal vein occlusion: a report by the American Academy of Ophthalmology. Ophthalmology. 2017;124:1412–23. https://doi.org/10.1016/j.ophtha.2017.03.060.

Adelman RA, Zheng Q, Mayer HR. Persistent ocular hypertension following intravitreal bevacizumab and ranibizumab injections. J Ocul Pharmacol Ther. 2010;26:105–10.

Tseng JJ, Vance SK, Della Torre KE, Mendonca LS, Cooney MJ, Klancnik JM, et al. Sustained increased intraocular pressure related to intravitreal antivascular endothelial growth factor therapy for neovascular age-related macular degeneration. J Glaucoma. 2012;21:241–7.

Hoang QV, Mendonca LS, Della Torre KE, Jung JJ, Tsuang AJ, Freund KB. Effect on intraocular pressure in patients receiving unilateral intravitreal anti-vascular endothelial growth factor injections. Ophthalmology. 2012;119:321–6. https://doi.org/10.1016/j.ophtha.2011.08.011.

Freund KB, Hoang QV, Saroj N, Thompson D. Intraocular pressure in patients with neovascular age-related macular degeneration receiving intravitreal aflibercept or ranibizumab. Ophthalmology. 2015;122:1802–10. https://doi.org/10.1016/j.ophtha.2015.04.018.

Soohoo JR, Seibold LK, Pantcheva MB, Kahook MY. Aflibercept for the treatment of neovascular glaucoma. Clin Exp Ophthalmol. 2015;43:803–7.

Morshedi RG, Ricca AM, Wirostko BM. Ocular hypertension following intravitreal antivascular endothelial growth factor therapy: review of the literature and possible role of nitric oxide. J Glaucoma. 2016;25:291–300.

Vo Kim S, Fajnkuchen F, Sarda V, Qu-Knafo L, Bodaghi B, Giocanti-Aurégan A. Sustained intraocular pressure elevation in eyes treated with intravitreal injections of anti-vascular endothelial growth factor for diabetic macular edema in a real-life setting. Graefe’s Arch Clin Exp Ophthalmol. 2017;255:2165–71.

Kahook MY, Kimura AE, Wong LJ, Ammar DA, Maycotte MA, Mandava N. Sustained elevation in intraocular pressure associated with intravitreal bevacizumab injections. Ophthalmic Surg Lasers Imaging. 2009;40:293–5.

Liu L, Ammar DA, Ross LA, Mandava N, Kahook MY, Carpenter JF. Silicone oil microdroplets and protein aggregates in repackaged bevacizumab and ranibizumab: effects of long-term storage and product mishandling. Investig Ophthalmol Vis Sci. 2011;52:1023–34.

Gal-Or O, Dotan A, Dachbash M, Tal K, Nisgav Y, Weinberger D, et al. Bevacizumab clearance through the iridocorneal angle following intravitreal injection in a rat model. Exp Eye Res. 2016;145:412–6.

Weinberger D, Bor-Shavit E, Barliya T, Dahbash M, Kinrot O, Gaton DD, et al. Mobile laser indirect ophthalmoscope: for the induction of choroidal neovascularization in a mouse model. Curr Eye Res. 2017;42:1545–51.

Kim SJ, Toma HS, Barnett JM, Penn JS. Ketorolac inhibits choroidal neovascularization by suppression of retinal VEGF. Exp Eye Res. 2010;91:537–43.

Kahook MY, Liu L, Ruzycki P, Mandava N, Carpenter JF, Petrash JM, et al. High-molecular-weight aggregates in repackaged bevacizumab. Retina. 2010;30:887–92.

Bakri SJ, Ekdawi NS. Intravitreal silicone oil droplets after intravitreal drug injections. Retina. 2008;28:996–1001.

Choi DY, Ortube MC, McCannel CA, Sarraf D, Hubschman J-P, McCannel TA, et al. Sustained elevated intraocular pressures after intravitreal injection of bevacizumab, ranibizumab, and pegaptanib. Retina. 2011;31:1028–35.

Good TJ, Kimura AE, Mandava N, Kahook MY. Sustained elevation of intraocular pressure after intravitreal injections of anti-VEGF agents. Br J Ophthalmol. 2011;95:1111–4.

Ricca AM, Morshedi RG, Wirostko BM. High intraocular pressure following anti-vascular endothelial growth factor therapy: proposed pathophysiology due to altered nitric oxide metabolism. J Ocul Pharmacol Ther. 2015;31:2–10.

Matušková V, Balcar VJ, Khan NA, Bonczek O, Ewerlingová L, Zeman T, et al. CD36 gene is associated with intraocular pressure elevation after intravitreal application of anti-VEGF agents in patients with age-related macular degeneration: implications for the safety of the therapy. Ophthalmic Genet. 2018;39:4–10.

Isenberg JS, Jia Y, Fukuyama J, Switzer CH, Wink DA, Roberts DD. Thrombospondin-1 inhibits nitric oxide signaling via CD36 by inhibiting myristic acid uptake. J Biol Chem. 2007;282:15404–15.

Stewart MW. Aflibercept (VEGF trap-eye): the newest anti-VEGF drug. Br J Ophthalmol. 2012;96:1157–8.

Ferrara N, Damico L, Shams N, Lowman H, Kim R. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina. 2006;26:859–70.

Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3:391–400.

Atchison EA, Wood KM, Mattox CG, Barry CN, Lum F, MacCumber MW. The real-world effect of intravitreous anti-vascular endothelial growth factor drugs on intraocular pressure: an analysis using the IRIS registry. Ophthalmology. 2018;125:676–82.

Stewart MW. Pharmacokinetics, pharmacodynamics and pre-clinical characteristics of ophthalmic drugs that bind VEGF. Expert Rev Clin Pharmacol. 2014;7:167–80.

Pozarowska D, Pozarowski P. The era of anti-vascular endothelial growth factor (VEGF) drugs in ophthalmology, VEGF and anti-VEGF therapy. Cent Eur J Immunol. 2016;41:311–6.

Krohne TU, Eter N, Holz FG, Meyer CH. Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am J Ophthalmol. 2008;146:508–12.

Krohne TU, Liu Z, Holz FG, Meyer CH. Intraocular pharmacokinetics of ranibizumab following a single intravitreal injection in humans. Am J Ophthalmol. 2012;154:682-6.e2.

Do DV, Rhoades W, Nguyen QD. Pharmacokinetic study of intravitreal aflibercept in humans with neovascular age-related macular degeneration. Retina. 2019;40:643–7.

Park SJ, Choi Y, Na YM, Hong HK, Park JY, Park KH, et al. Intraocular pharmacokinetics of intravitreal aflibercept (Eylea) in a rabbit model. Investig Ophthalmol Vis Sci. 2016;57:2612–7.

García-Quintanilla L, Luaces-Rodríguez A, Gil-Martínez M, Mondelo-García C, Maroñas O, Mangas-Sanjuan V, et al. Pharmacokinetics of intravitreal anti-VEGF drugs in age-related macular degeneration. Pharmaceutics. 2019;11:1–22.