Affine semigroups acting properly discontinuously on a hyperbolic space

Springer Science and Business Media LLC - Tập 194 Số 2 - Trang 703-722 - 2013
G. A. Soifer1
1Bar-Ilan University

Tóm tắt

Từ khóa


Tài liệu tham khảo

H. Abels, Properly discontinuous groups of affine transformations. A survey, Geometriae Dedicata 87 (2001), 309–333.

H. Abels, G. A. Margulis and G. A. Soifer, Semigroups containing proximal linear maps, Israel Journal of Mathematics 91 (1995), 1–30.

H. Abels, G. A. Margulis and G. A. Soifer, On the Zariski closure of the linear part of a properly discontinuous group of affine transformations, Journal of Differential Geometry 60 (2003), 314–335.

H. Abels, G. A. Margulis and G. A. Soifer, The Auslander conjecture for groups leaving a form of signature (n−2, 2) invariant, Israel Journal of Mathematics 148 (2005), 11–21.

H. Abels, G. A. Margulis and G. A. Soifer, The linear part of an affine group acting properly discontinuous and leaving a quadratic form invariant, Geometriae Dedicata 153 (2011), 1–46.

A. Borel, Linear Algebraic Groups, Springer-Verlag, Berlin, 1968.

E. Breuillard and T. Gelander, On dense free subgroups of Lie groups, Journal of Algebra 261 (2003), 448–467.

D. Fried and W. Goldman, Three-dimensional affine crystallographic groups, Advances in Mathematics 471 (1983), 1–49.

W. Goldman and Y. Kamishima, The fundamental group of a compact flat Lorentz space form is virtually polycyclic, Journal of Differential Geometry 19 (1984), 233–240.

G. A. Margulis, Free properly discontinuous groups of affine transformations, Doklady Akademii Nauk SSSR 272 (1983), 937–940.

G. A. Soifer, The linear part of a discontinuously acting Euclidean semigroup, Journal of Algebra 250 (2002), 647–663.

G. A. Soifer, Free subgroups of linear groups, Pure and Applied Mathematics Quarterly 3 (2007), 987–1003.