Affine Systems inL2(Rd): The Analysis of the Analysis Operator

Journal of Functional Analysis - Tập 148 Số 2 - Trang 408-447 - 1997
Amos Ron1, Zuowei Shen2
1Computer Science Department, University of Wisconsin—Madison, 1210 West Dayton Street, Madison, Wisconsin, 53706
2Department of Mathematics, National University of Singapore 10 Kent Ridge Crescent, Singapore 0511

Tóm tắt

Từ khóa


Tài liệu tham khảo

de Boor, 1994, The structure of shift invariant spaces and applications to approximation theory, J. Funct. Anal., 119, 37

de Boor, 1993, On the construction of multivariate (pre) wavelets, Constr. Approx., 9, 123, 10.1007/BF01198001

John, J. Benedetto, Shidong, Li, The theory of multiresolution analysis frames and applications to filter banks

Chui, 1993, Bessel sequences and affine frames, Appl. Comput. Harmon. Anal., 1, 29, 10.1006/acha.1993.1003

Chui, 1993, Inequality of Littlewood-Paley type of frames and wavelets, SIAM J. Math. Anal., 24, 263, 10.1137/0524017

C. K. Chui, X. Shi, NN, Proc. Amer. Math. Soc.

Chui, 1994, CAT Report, 337

Cohen, 1992, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math., 45, 485, 10.1002/cpa.3160450502

Daubechies, 1990, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory, 36, 961, 10.1109/18.57199

Daubechies, 1988, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41, 909, 10.1002/cpa.3160410705

I. Daubechies, 1992, Ten lectures on wavelets, CBMF Conference Series in Applied Mathematics, 61, SIAM, Philadelphia

Daubechies, 1986, Painless non-orthogonal expansions, J. Math. Phys., 45, 1271, 10.1063/1.527388

K. Gröchenig, A. Ron, Tight compactly supported wavelet frames of arbitrarily high smoothness, Proc. Amer. Math. Soc.

B. Han, On dual wavelet tight frames

Jia, 1991, Using the refinement equation for the construction of pre-wavelts II: Power of two

Jia, 1994, Multiresolution and wavelets, Proc. Edinburgh Math. Soc., 37, 271, 10.1017/S0013091500006076

Lawton, 1990, Tight frames of compactly supported affine wavelets, J. Math. Phys., 31, 1898, 10.1063/1.528688

R. Long, W. Chen, Wavelet basis packets and wavelet frame packets

Lawton, 1997, Stability and orthonormality of multivariate refinable functions, SIAM J. Math. Anal., 28, 999, 10.1137/S003614109528815X

Mallat, 1989, Multiresolution approximations and wavelet orthonormal bases ofL2, Trans. Amer. Math. Soc., 315, 69

Meyer, 1990

Riemenschneider, 1991, Box splines, cardinal series, and wavelets, 133

Riemenschneider, 1992, Wavelets and pre-wavelets in low dimensions, J. Approx. Theory, 71, 18, 10.1016/0021-9045(92)90129-C

Ron, 1995, Frames and stable bases for shift-invariant subspaces ofL2d), Canad. J. Math., 47, 1051, 10.4153/CJM-1995-056-1

A. Ron, Z. Shen, Weyl-Heisenberg frames and Riesz bases inL2d), Duke Math. J.

A. Ron, Z. Shen, Gramian analysis of affine bases and affine frames, Approximation Theory VIII, C. K. ChuiL. L. SchumakerJ. D. Ward, 375, 382, Academic Press New York

A. Ron, Z. Shen, Compactly supported tight affine spline frames inL2d), Math. Comp.

A. Ron, Z. Shen, Affine systems inL2d) II: dual systems