Affecting factors, optimization, and suppression of grinding marks: a review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zhang C, Guo B, Zhao Q, Liu H, Wang J, Zhang J (2019) Ultra-precision grinding of AlON ceramics: surface finish and mechanisms. J Eur Ceram Soc 39(13):3668–3676. https://doi.org/10.1016/j.jeurceramsoc.2019.05.005
Deng H, Xu Z (2021) Laser dressing of arc-shaped resin-bonded diamond grinding wheels. J Mater Process Technol 288:116884. https://doi.org/10.1016/j.jmatprotec.2020.116884
Chen M, Zhao Q, Shen D, Dan L (2005) The critical conditions of brittle–ductile transition and the factors influencing the surface quality of brittle materials in ultra-precision grinding. J Mater Process Technol 168(1):75–82. https://doi.org/10.1016/j.jmatprotec.2004.11.002
Couey JA, Marsh ER, Knapp BR, Vallance RR (2008) In-process force monitoring for precision grinding semiconductor silicon wafers. Int J Technol Manag 7(5):430–440. https://doi.org/10.1504/IJMTM.2005.007695
Zhu X, Kang R, Dong Z, Guo D (2010) Ultra-precision grinding technology and grinder of silicon wafers. China Mech Eng 21(18):2156–2164
Li L, Jiang Y, Zhang F (2011) A study on the manufacturing system of the axes linked ultra-precision grinding of aspheric surface. Key Eng Mater 487:500–504
Wu M, Guo B, He P, Zhao Q (2018) Precision grinding of a microstructured surface on hard and brittle materials by a microstructured coarse-grained diamond grinding wheel. Ceram Int 44(7):8026–8034. https://doi.org/10.1016/j.ceramint.2018.01.243
Sazedur Rahman M, Saleh T, Lim HS, Son SM, Rahman M (2008) Development of an on-machine profile measurement system in ELID grinding for machining aspheric surface with software compensation. Int J Mach Tool Manu 48(7/8):887–895. https://doi.org/10.1016/j.ijmachtools.2007.11.005
Tawakoli T, Azarhoushang B (2008) Influence of ultrasonic vibrations on dry grinding of soft steel. Int J Mach Tool Manu 48(14):1585–1591. https://doi.org/10.1016/j.ijmachtools.2008.05.010
Deng H, Xu Z (2020) Laser-dressing topography and quality of resin-bonded diamond grinding wheels. Opt Lasers Eng 136:106322. https://doi.org/10.1016/j.optlaseng.2020.106322
Tawakoli T, Azarhoushang B, Mohammad RM (2009) Ultrasonic assisted dry grinding of 42CrMo4. Int J Adv Manuf Technol 42(9):883–891. https://doi.org/10.1007/s00170-008-1646-7
Guo B, Zhao Q (2015) Mechanical truing of V-shape diamond wheels for micro-structured surface grinding. Int J Adv Manuf Technol 78(5):1067–1073. https://doi.org/10.1007/s00170-014-6721-7
Chen B, Guo B, Zhao Q (2015) An investigation into parallel and cross grinding of aspheric surface on monocrystal silicon. Int J Adv Manuf Technol 80(5):737–746. https://doi.org/10.1007/s00170-015-7045-y
Suzuki H, Okada M, Lin W, Morita S, Yamagata Y, Hanada H, Araki H, Kashima S (2014) Fine finishing of ground DOE lens of synthetic silica by magnetic field-assisted polishing. CIRP Ann Manuf Technol 63(1):313–316. https://doi.org/10.1016/j.cirp.2014.03.027
Zhu S, Liu Y, Guo J, Li X (2009) Relationship of grinding textures and surface friction coefficient of common steels. Mater Mech Eng 33(6):31–33. https://doi.org/10.1061/41039(345)45
Deng Z, Tao N, Tang H, Wan L, Liu W (2012) Research status and development trend of simulation prediction system for grinding process. Diamond Abras Eng 32(3):64–68
Ding W, Dai C, Yu T, Xu J, Fu Y (2017) Grinding performance of textured monolayer CBN wheels: undeformed chip thickness nonuniformity modeling and ground surface topography prediction. Int J Mach Tool Manu 122:66–80. https://doi.org/10.1016/j.ijmachtools.2017.05.006
Lin X, Liu J, Ke X, Guo Y (2016) Investigation of waviness error in surface grinding of large axisymmetric aspheric lenses. Proc Inst Mech Eng B J Eng 230(7):1195–1202. https://doi.org/10.1177/0954405415624638
Solhtalab A, Adibi H, Esmaeilzare A, Rezaei SM (2019) Cup wheel grinding-induced subsurface damage in optical glass BK7: an experimental, theoretical and numerical investigation. Int J Precis Eng Manuf 57:162–175. https://doi.org/10.1016/j.precisioneng.2019.04.003
Brinksmeier E, Mutlugünes Y, Klocke F, Aurich LC, Shore P, Ohmori H (2010) Ultra-precision grinding. CIRP Ann Manuf Technol 59(2):652–671. https://doi.org/10.1016/j.cirp.2010.05.001
Zhang L, Chen P, An T, Dai Y, Qin F (2019) Analytical prediction for depth of subsurface damage in silicon wafer due to self-rotating grinding process. Curr Appl Phys 19(5):570–581. https://doi.org/10.1016/j.cap.2019.02.015
Jiang C, Cheng J, Wu T (2017) Theoretical model of brittle material removal fraction related to surface roughness and subsurface damage depth of optical glass during precision grinding. Int J Precis Eng Manuf 49:421–427. https://doi.org/10.1016/j.precisioneng.2017.04.004
Zhang Z, Huo F, Wu Y, Huang H (2011) Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material. Int J Mach Tool Manu 51(1):18–24. https://doi.org/10.1016/j.ijmachtools.2010.10.006
Sedlaček M, Podgornik B, Vižintin J (2012) Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribol Int 48:102–112. https://doi.org/10.1016/j.triboint.2011.11.008
Yue H, Deng J, Zhang Y, Meng Y, Zou X (2020) Characterization of the textured surfaces under boundary lubrication. Tribol Int 151:106359. https://doi.org/10.1016/j.triboint.2020.106359
Bigerelle M, Najjar D, Iost A (2003) Relevance of roughness parameters for describing and modelling machined surfaces. J Mater Sci 38(11):2525–2536. https://doi.org/10.1023/A:1023929807546
Zhou L, Tian Y, Huang H, Sato H, Shimizu J (2012) A study on the diamond grinding of ultra-thin silicon wafers. Proc Inst Mech Eng B J Eng 226(1):66–75. https://doi.org/10.1177/0954405411414768
Chao C, Yang S, Xiu S (2011) Characteristics of the point grinding surface texture and its effects on evaluation parameters of the surface roughness. J Northeast Univ 32(6):846–849. https://doi.org/10.1080/17415993.2010.547197
Sedlaček M, Gregorčič P, Podgornik B (2017) Use of the roughness parameters Ssk and Sku to control friction-a method for designing surface texturing. Tribol Trans 60(2):260–266. https://doi.org/10.1080/10402004.2016.1159358
Sedlacek M, Podgornik B, Vizintin J (2012) Planning surface texturing for reduced friction in lubricated sliding using surface roughness parameters skewness and kurtosis. Proc Inst Mech Eng J J Eng 226(8):661–667. https://doi.org/10.1177/1350650112439809
Chen B, Li S, Deng Z, Guo B, Zhao Q (2017) Grinding marks on ultra-precision grinding spherical and aspheric surfaces. Int J Precis Eng Manuf Green Technol 4(4):419–429. https://doi.org/10.1007/s40684-017-0047-5
Chen H, Zhou Q, Wan G, Xiao Q (2007) Surface mark simulation of double-side grinding of 300 mm silicon wafer. Chin J Rare Met 31(6):742–745. https://doi.org/10.3969/j.issn.0258-7076.2007.06.004
Agarwal S, Venkateswara Rao P (2010) Modeling and prediction of surface roughness in ceramic grinding. Int J Mach Tool Manu 50(12):1065–1076. https://doi.org/10.1016/j.ijmachtools.2010.08.009
Pan Y, Zhao Q, Guo B, Chen B, Wang J, Wu X (2020) An investigation of the surface waviness features of ground surface in parallel grinding process. Int J Mech Sci 170:105351. https://doi.org/10.1016/j.ijmecsci.2019.105351
Kara F, Iek A, Demir H (2013) Multiple regression and ANN models for surface quality of cryogenically-treated AISI 52100 bearing steel. J Balk Tribol Assoc 19(4):570–584
Wu J, Huang C, Liao C (2003) Fracture strength characterization and failure analysis of silicon dies. Microelectron Reliab 43(2):269–277. https://doi.org/10.1016/S0026-2714(02)00314-1
Wang Y, Xu L, Li D, Wang J, Shi L, Hu D (2012) Sphere generation grinding based spherical surface marks analysis. J Shanghai Jiaotong Univ 46(5):740–745
Zheng L, Chen W, Pozzi M, Teng X, Huo D (2019) Modulation of surface wettability by vibration assisted milling. Int J Precis Eng Manuf 55:179–188. https://doi.org/10.1016/j.precisioneng.2018.09.006
Tian Y, Jin Z, Kang R, Guo D (2005) Analysis of kinematic geometry on wafer rotation grinding processes. China Mech Eng 16(20):1798–1801. https://doi.org/10.3321/j.issn:1004-132X.2005.20.004
Li G, Rahim M, Pan W, Wen C, Ding S (2020) The manufacturing and the application of polycrystalline diamond tools–a comprehensive review. J Manuf Process 56:400–416. https://doi.org/10.1016/j.jmapro.2020.05.010
Jiang J, Sun S, Wang D, Yang Y, Liu X (2020) Surface texture formation mechanism based on the ultrasonic vibration-assisted grinding process. Int J Mach Tool Manu 156:103595. https://doi.org/10.1016/j.ijmachtools.2020.103595
Wos S, Koszela W, Pawlus P (2020) The effect of graphite surface texturing on the friction reduction in dry contact. Tribol Int 151:106535. https://doi.org/10.1016/j.triboint.2020.106535
Varenberg M, Halperin G, Etsion I (2002) Different aspects of the role of wear debris in fretting wear. Wear 252(11):902–910. https://doi.org/10.1016/S0043-1648(02)00044-3
Volchok A, Halperin G, Etsion I (2002) The effect of surface regular microtopography on fretting fatigue life. Wear 253(3):509–515. https://doi.org/10.1016/S0043-1648(02)00148-5
Wos S, Koszela W, Pawlus P (2017) The effect of both surfaces textured on improvement of tribological properties of sliding elements. Tribol Int 113:182–188. https://doi.org/10.1016/j.triboint.2016.10.044
Wang X, Shi L, Dai Q, Huang W, Wang X (2018) Multi-objective optimization on dimple shapes for gas face seals. Tribol Int 123:216–223. https://doi.org/10.1016/j.triboint.2018.03.011
Podgornik B, Vilhena L, Sedlaček M, Rek Z, Žun I (2012) Effectiveness and design of surface texturing for different lubrication regimes. Meccanica 47(7):1613–1622. https://doi.org/10.1007/s11012-012-9540-7
Liu C, Zhang L (2004) Selection and effect of parts surface roughness. Mod Mach Manuf Eng 2:114–115. https://doi.org/10.3969/j.issn.1671-3133.2004.02.043
Li J, Zhu H (2009) Surface texture and its influence on tribological properties. Lubr Oil 34(2):94–97. https://doi.org/10.3969/j.issn.0254-0150.2009.02.028
Lu H, Wen J, Xiu S, Deng Y (2016) Analysis of multi-scale point grinding surface texture features and tribological properties. Mach Des Manuf 7:93–95. https://doi.org/10.3969/j.issn.1001-3997.2016.07.024
Chen S, Cheung C, Zhang F (2018) An experimental and theoretical analysis of surface generation in the ultra-precision grinding of hard and brittle materials. Int J Adv Manuf Technol 97(5):2715–2729. https://doi.org/10.1007/s00170-018-2121-8
Bhaduri D, Soo S, Aspinwall D, Novovic D, Harden P, Bohr S, Martin D (2012) A study on ultrasonic assisted creep feed grinding of nickel based superalloys. Procedia CIRP 1(1):359–364. https://doi.org/10.1016/j.procir.2012.04.064
Chen H, Tang J, Zhou W (2013) An experimental study of the effects of ultrasonic vibration on grinding surface roughness of C45 carbon steel. Int J Adv Manuf Technol 68(9):2095–2098. https://doi.org/10.1007/s00170-013-4824-1
Curtis D, Soo S, Aspinwall D, Mantle A (2016) Evaluation of workpiece surface integrity following point grinding of advanced titanium and nickel based alloys. Procedia CIRP 45:47–50. https://doi.org/10.1016/j.procir.2016.02.343
Zhao L, Zhao Q, Jin G, Kang X, Xin X (2013) Precision grinding of BK7 glasses using conditioned coarse-grained diamond wheel. Proc Inst Mech Eng B J Eng Manuf 227(10):1571–1577. https://doi.org/10.1177/0954405413488593
Zhang Q, Zhao Q, To S, Guo B (2017) Application of X- ray diffraction to study the grinding induced surface damage mechanism of WC/Co. Int J Refract Met Hard Mater 64:205–209. https://doi.org/10.1016/j.ijrmhm.2016.11.006
Liu Q, Huang G, Xu X, Fang C, Cui C (2018) Influence of grinding fiber angles on grinding of the 2D–Cf /C–SiC composites. Ceram Int 44(11):12774–12782. https://doi.org/10.1016/j.ceramint.2018.04.083
Jiang X, Guo M, Li B (2018) Active control of high-frequency tool-workpiece vibration in micro-grinding. Int J Adv Manuf Technol 94(1):1429–1439. https://doi.org/10.1007/s00170-017-1015-5
Yan Y, Xu J, Wiercigroch M (2016) Regenerative chatter in self-interrupted plunge grinding. Meccanica 51(12):3185–3202. https://doi.org/10.1007/s11012-016-0554-4
Hassui A, Diniz A (2003) Correlating surface roughness and vibration on plunge cylindrical grinding of steel. Int J Mach Tool Manu 43(8):855–862. https://doi.org/10.1016/S0890-6955(03)00049-X
Kuriyagawa T, Yosihara N, Wu Y, Syoji K (2001) Formation of vertical striped pattern on the ground surface in high-reciprocation profile grinding. Int J Jpn Soc Precis Eng 67(8):1316–1320. https://doi.org/10.2493/jjspe.67.1316
Cao H, Dörgeloh T, Riemer O, Brinksmeier E (2017) Adaptive separation of unbalance vibration in air bearing spindles. Procedia CIRP 62:357–362. https://doi.org/10.1016/j.procir.2016.06.069
Inasaki I, Karpuschewski B, Lee H (2001) Grinding chatter–origin and suppression. CIRP Ann Manuf Technol 50(2):515–534. https://doi.org/10.1016/S0007-8506(07)62992-8
Chen S, Cheung C, Zhang F, Zhao C (2018) Three-dimensional modelling and simulation of vibration marks on surface generation in ultra-precision grinding. Int J Precis Eng Manuf 53:221–235. https://doi.org/10.1016/j.precisioneng.2018.04.006
Chen S, Cheung C, Zhao C, Zhang F (2017) Simulated and measured surface roughness in high-speed grinding of silicon carbide wafers. Int J Adv Manuf Technol 91(1-4):719–730. https://doi.org/10.1007/s00170-016-9805-8
Chen J, Fang Q, Li P (2015) Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding. Int J Mach Tool Manu 91:12–23. https://doi.org/10.1016/j.ijmachtools.2015.01.003
Cao Y, Guan J, Li B, Chen X, Yang J, Gan C (2013) Modeling and simulation of grinding surface topography considering wheel vibration. Int J Adv Manuf Technol 66(5):937–945. https://doi.org/10.1007/s00170-012-4378-7
Huo F, Kang R, Li Z, Guo D (2013) Origin, modeling and suppression of grinding marks in ultra-precision grinding of silicon wafers. Int J Mach Tool Manu 66:54–65. https://doi.org/10.1016/j.ijmachtools.2012.11.006
Lang X, He Y, Tang J, Chen H (2014) Grinding force model based on prominent height of abrasive submitted to Rayleigh distribution. J Cent South Univ 45(10):3386–3391
Hou Z, Komanduri R (2003) On the mechanics of the grinding process-Part I. Stochastic nature of the grinding process. Int J Mach Tool Manu 43(15):1579–1593. https://doi.org/10.1016/S0890-6955(03)00186-X
Huo F, Guo D, Kang R, Feng G (2012) Nanogrinding of SiC wafers with high flatness and low subsurface damage. J Trans Nonferrous Metal Soc 22(12):3027–3033. https://doi.org/10.1016/S1003-6326(11)61566-5
Zhao Q, Yu G, Ekkard B, Oltmann R, Kal R (2006) Ultra—precision grinding of BK7 optical glass using coarse-grained electroplated diamond wheel. Chin J Mech Eng 42(10):95–101. https://doi.org/10.3321/j.issn:0577-6686.2006.10.016
Zhao Q, Yao J, Chen J (2009) ELID assisted grinding of optical glass with fine and coarse grained copper-resin bonded. Adv Mater Res 76-78:76–81. https://doi.org/10.4028/www.scientific.net/AMR.76-78.76
Zhao Q, Chen J, Huang H, Fang X (2011) Grinding damage of BK7 using copper-resin bond coarse-grained diamond wheel. Int J Precis Eng Manuf 12(1):5–13. https://doi.org/10.1007/s12541-011-0001-3
Wu M, Guo B, Zhao Q, He P (2008) Precision grinding of a microstructured surface on hard and brittle materials by a microstructured coarse-grained diamond grinding wheel. Ceram Int 44(7):8026–8034. https://doi.org/10.1016/j.ceramint.2018.01.243
Zhao Q, Guo B (2015) Ultra-precision grinding of optical glasses using mono-layer nickel electroplated coarse-grained diamond wheels. Part 1: ELID assisted precision conditioning of grinding wheels. Precis Eng 39:56–66. https://doi.org/10.1016/j.precisioneng.2014.07.006
Zhao Q, Guo B (2015) Ultra-precision grinding of optical glasses using mono-layer nickel electroplated coarse-grained diamond wheels. Part 2: Investigation of profile and surface grinding. Precis Eng 39:67–78. https://doi.org/10.1016/j.precisioneng.2014.07.007
Zhao G, Lv Y, Li Y, Li W (2018) Simulation of the surface roughness with grinding wheel of ordered abrasive pattern. Mach Des Manuf 3:223–225. https://doi.org/10.3969/j.issn.1001-3997.2018.03.066
Guo B, Jin Q, Zhao Q, Wu M, Zeng Z (2016) Research progress of grinding technology with surface structured wheels. J Harbin Inst Technol 48(7):1–13. https://doi.org/10.11918/j.issn.0367-6234.2016.07.001
Oliveira J, Bottene A, França T (2010) A novel dressing technique for texturing of ground surfaces. J CIRP Ann Manuf Technol 59(1):361–364. https://doi.org/10.1016/j.cirp.2010.03.119
Stȩpień P (2009) Regular surface texture generated by special grinding process. J Manuf Sci E T ASME 131(1):123–136. https://doi.org/10.1115/1.3070511
Stepien P (2008) Mechanism of grinding wheel surface reproduction in regular surface texture generation. Surf Eng 24(3):219–225. https://doi.org/10.1179/174329408X282596
Stepien P (2011) Deterministic and stochastic components of regular surface texture generated by a special grinding process. Wear 271(3):514–518. https://doi.org/10.1016/j.wear.2010.03.027
Shan J, Xu L, Hu D (2016) Sphericity error estimation method based on spherical grinding marks. J Shanghai Jiaotong Univ 50(5):654–659. https://doi.org/10.16183/j.cnki.jsjtu.2016.05.002
Hou H, Jiang T, Hu D (2011) Space trajectory analysis and parameter selection on large spherical precision grinding. China Mech Eng 22(7):757–761
Hou H, Li D, Wei C, Hu D, Xu K (2011) Process optimization in two spherical surface grinding processes using trajectories analysis. Proc Inst Mech Eng B J Eng Manuf 225(12):2177–2188. https://doi.org/10.1177/0954405411411404
Trmal G, Holesovsky F (2001) Wave-shift and its effect on surface quality in super-abrasive grinding. Int J Mach Tool Manuf 41(7):979–989. https://doi.org/10.1016/S0890-6955(00)00116-4
Chen Z, Wei X, Ren Q, Xie X (2009) Analysis and simulation of grinding motion on large size wafer self-rotating grinding. Diamond Abras Eng 2009(5):1–12. https://doi.org/10.3969/j.issn.1006-852X.2009.05.001
Hwang Y, Ha K, Kim Y, Kim J, Lee S (2016) Suppression of the inflection pattern in ultraprecision grinding through the minimization of the hydrodynamic force using a toothed wheel. Int J Mach Tool Manuf 100:105–115. https://doi.org/10.1016/j.ijmachtools.2015.10.009
Sun W, Pei Z, Fisher G (2005) Fine grinding of silicon wafers: effects of chuck shape on grinding marks. Int J Mach Tool Manuf 45(6):673–686. https://doi.org/10.1016/j.ijmachtools.2004.09.020
Wang S, Hu Y, Feng Z (2010) Effect of surface roughness on sliding friction in lubricated contacts-reciprocal experiment study. Mod Manuf Eng 2010(3):21–24. https://doi.org/10.3969/j.issn.1671-3133.2010.03.007
Menezes P, Kishore KS (2006) Effect of directionality of unidirectional grinding marks on friction and transfer layer formation of Mg on steel using inclined scratch test. Mater Sci Eng A Struct 429(1):149–160. https://doi.org/10.1016/j.msea.2006.05.080
Chao C, Wang H, Kong N, Xiu S (2014) Point-grinding texture characteristics and its influence on tribological property of parts. Lubr Eng 39(9):4–7. https://doi.org/10.3969/j.issn.0254-0150.2014.09.002
Du Y, Zhang K (2017) Influence of grinding textures on tribological property and lubricating oil matching based on finite element simulation. Surf Technol 46(7):122–127. https://doi.org/10.16490/j.cnki.issn.1001-3660.2017.07.020
Zhang Y, Guo Y, Zhuang S (2003) Influence of chatter vibration on the ultreprecision machining accuracy of aspheric surface. Diamond Abras Eng 3:17–20. https://doi.org/10.3969/j.issn.1006-852X.2003.03.004
Chidambaram S, Pei Z, Kassir S (2003) Fine grinding of silicon wafers: a mathematical model for grinding marks. Int J Mach Tool Manuf 43(15):1595–1602. https://doi.org/10.1016/S0890-6955(03)00187-1
Pei Z, Alan S (2002) Fine grinding of silicon wafers: designed experiments. Int J Mach Tool Manu 42(3):395–404. https://doi.org/10.1016/S0890-6955(01)00123-7
Wang Y, Liu K, Ning J, Zhang Z (2016) Experimental analysis on grinding burn for bearing rings raceway made of G95 Cr18. Bearing 12:23–27. https://doi.org/10.3969/j.issn.1000-3762.2016.12.007
Lin X, Ma K, Huang H, Xu Q (2015) Distribution characteristics of surface roughness and waviness error in axisymmetric aspheric grinding. High Power Laser Part Beams 27(9):155–159. https://doi.org/10.11884/HPLPB201527.092013