Affecting factors, optimization, and suppression of grinding marks: a review

Bing Chen1, Liang Luo2, Haowen Jiao2, Shunshun Li2, Shichun Li1, Zhaohui Deng1, Hong Yao3
1Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult-to-Cut Material, Intelligent Manufacturing Institute of HNUST, Hunan University of Science and Technology, Xiangtan, 411201, China
2School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
3Union Optech (Zhongshan) Technology Co., Ltd., Zhongshan, 528437, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhang C, Guo B, Zhao Q, Liu H, Wang J, Zhang J (2019) Ultra-precision grinding of AlON ceramics: surface finish and mechanisms. J Eur Ceram Soc 39(13):3668–3676. https://doi.org/10.1016/j.jeurceramsoc.2019.05.005

Deng H, Xu Z (2021) Laser dressing of arc-shaped resin-bonded diamond grinding wheels. J Mater Process Technol 288:116884. https://doi.org/10.1016/j.jmatprotec.2020.116884

Chen M, Zhao Q, Shen D, Dan L (2005) The critical conditions of brittle–ductile transition and the factors influencing the surface quality of brittle materials in ultra-precision grinding. J Mater Process Technol 168(1):75–82. https://doi.org/10.1016/j.jmatprotec.2004.11.002

Couey JA, Marsh ER, Knapp BR, Vallance RR (2008) In-process force monitoring for precision grinding semiconductor silicon wafers. Int J Technol Manag 7(5):430–440. https://doi.org/10.1504/IJMTM.2005.007695

Zhu X, Kang R, Dong Z, Guo D (2010) Ultra-precision grinding technology and grinder of silicon wafers. China Mech Eng 21(18):2156–2164

Li L, Jiang Y, Zhang F (2011) A study on the manufacturing system of the axes linked ultra-precision grinding of aspheric surface. Key Eng Mater 487:500–504

Wu M, Guo B, He P, Zhao Q (2018) Precision grinding of a microstructured surface on hard and brittle materials by a microstructured coarse-grained diamond grinding wheel. Ceram Int 44(7):8026–8034. https://doi.org/10.1016/j.ceramint.2018.01.243

Sazedur Rahman M, Saleh T, Lim HS, Son SM, Rahman M (2008) Development of an on-machine profile measurement system in ELID grinding for machining aspheric surface with software compensation. Int J Mach Tool Manu 48(7/8):887–895. https://doi.org/10.1016/j.ijmachtools.2007.11.005

Tawakoli T, Azarhoushang B (2008) Influence of ultrasonic vibrations on dry grinding of soft steel. Int J Mach Tool Manu 48(14):1585–1591. https://doi.org/10.1016/j.ijmachtools.2008.05.010

Deng H, Xu Z (2020) Laser-dressing topography and quality of resin-bonded diamond grinding wheels. Opt Lasers Eng 136:106322. https://doi.org/10.1016/j.optlaseng.2020.106322

Tawakoli T, Azarhoushang B, Mohammad RM (2009) Ultrasonic assisted dry grinding of 42CrMo4. Int J Adv Manuf Technol 42(9):883–891. https://doi.org/10.1007/s00170-008-1646-7

Guo B, Zhao Q (2015) Mechanical truing of V-shape diamond wheels for micro-structured surface grinding. Int J Adv Manuf Technol 78(5):1067–1073. https://doi.org/10.1007/s00170-014-6721-7

Chen B, Guo B, Zhao Q (2015) An investigation into parallel and cross grinding of aspheric surface on monocrystal silicon. Int J Adv Manuf Technol 80(5):737–746. https://doi.org/10.1007/s00170-015-7045-y

Suzuki H, Okada M, Lin W, Morita S, Yamagata Y, Hanada H, Araki H, Kashima S (2014) Fine finishing of ground DOE lens of synthetic silica by magnetic field-assisted polishing. CIRP Ann Manuf Technol 63(1):313–316. https://doi.org/10.1016/j.cirp.2014.03.027

Zhu S, Liu Y, Guo J, Li X (2009) Relationship of grinding textures and surface friction coefficient of common steels. Mater Mech Eng 33(6):31–33. https://doi.org/10.1061/41039(345)45

Deng Z, Tao N, Tang H, Wan L, Liu W (2012) Research status and development trend of simulation prediction system for grinding process. Diamond Abras Eng 32(3):64–68

Ding W, Dai C, Yu T, Xu J, Fu Y (2017) Grinding performance of textured monolayer CBN wheels: undeformed chip thickness nonuniformity modeling and ground surface topography prediction. Int J Mach Tool Manu 122:66–80. https://doi.org/10.1016/j.ijmachtools.2017.05.006

Lin X, Liu J, Ke X, Guo Y (2016) Investigation of waviness error in surface grinding of large axisymmetric aspheric lenses. Proc Inst Mech Eng B J Eng 230(7):1195–1202. https://doi.org/10.1177/0954405415624638

Solhtalab A, Adibi H, Esmaeilzare A, Rezaei SM (2019) Cup wheel grinding-induced subsurface damage in optical glass BK7: an experimental, theoretical and numerical investigation. Int J Precis Eng Manuf 57:162–175. https://doi.org/10.1016/j.precisioneng.2019.04.003

Brinksmeier E, Mutlugünes Y, Klocke F, Aurich LC, Shore P, Ohmori H (2010) Ultra-precision grinding. CIRP Ann Manuf Technol 59(2):652–671. https://doi.org/10.1016/j.cirp.2010.05.001

Zhang L, Chen P, An T, Dai Y, Qin F (2019) Analytical prediction for depth of subsurface damage in silicon wafer due to self-rotating grinding process. Curr Appl Phys 19(5):570–581. https://doi.org/10.1016/j.cap.2019.02.015

Jiang C, Cheng J, Wu T (2017) Theoretical model of brittle material removal fraction related to surface roughness and subsurface damage depth of optical glass during precision grinding. Int J Precis Eng Manuf 49:421–427. https://doi.org/10.1016/j.precisioneng.2017.04.004

Zhang Z, Huo F, Wu Y, Huang H (2011) Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material. Int J Mach Tool Manu 51(1):18–24. https://doi.org/10.1016/j.ijmachtools.2010.10.006

Sedlaček M, Podgornik B, Vižintin J (2012) Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribol Int 48:102–112. https://doi.org/10.1016/j.triboint.2011.11.008

Yue H, Deng J, Zhang Y, Meng Y, Zou X (2020) Characterization of the textured surfaces under boundary lubrication. Tribol Int 151:106359. https://doi.org/10.1016/j.triboint.2020.106359

Bigerelle M, Najjar D, Iost A (2003) Relevance of roughness parameters for describing and modelling machined surfaces. J Mater Sci 38(11):2525–2536. https://doi.org/10.1023/A:1023929807546

Zhou L, Tian Y, Huang H, Sato H, Shimizu J (2012) A study on the diamond grinding of ultra-thin silicon wafers. Proc Inst Mech Eng B J Eng 226(1):66–75. https://doi.org/10.1177/0954405411414768

Chao C, Yang S, Xiu S (2011) Characteristics of the point grinding surface texture and its effects on evaluation parameters of the surface roughness. J Northeast Univ 32(6):846–849. https://doi.org/10.1080/17415993.2010.547197

Sedlaček M, Gregorčič P, Podgornik B (2017) Use of the roughness parameters Ssk and Sku to control friction-a method for designing surface texturing. Tribol Trans 60(2):260–266. https://doi.org/10.1080/10402004.2016.1159358

Sedlacek M, Podgornik B, Vizintin J (2012) Planning surface texturing for reduced friction in lubricated sliding using surface roughness parameters skewness and kurtosis. Proc Inst Mech Eng J J Eng 226(8):661–667. https://doi.org/10.1177/1350650112439809

Chen B, Li S, Deng Z, Guo B, Zhao Q (2017) Grinding marks on ultra-precision grinding spherical and aspheric surfaces. Int J Precis Eng Manuf Green Technol 4(4):419–429. https://doi.org/10.1007/s40684-017-0047-5

Chen H, Zhou Q, Wan G, Xiao Q (2007) Surface mark simulation of double-side grinding of 300 mm silicon wafer. Chin J Rare Met 31(6):742–745. https://doi.org/10.3969/j.issn.0258-7076.2007.06.004

Agarwal S, Venkateswara Rao P (2010) Modeling and prediction of surface roughness in ceramic grinding. Int J Mach Tool Manu 50(12):1065–1076. https://doi.org/10.1016/j.ijmachtools.2010.08.009

Pan Y, Zhao Q, Guo B, Chen B, Wang J, Wu X (2020) An investigation of the surface waviness features of ground surface in parallel grinding process. Int J Mech Sci 170:105351. https://doi.org/10.1016/j.ijmecsci.2019.105351

Kara F, Iek A, Demir H (2013) Multiple regression and ANN models for surface quality of cryogenically-treated AISI 52100 bearing steel. J Balk Tribol Assoc 19(4):570–584

Wu J, Huang C, Liao C (2003) Fracture strength characterization and failure analysis of silicon dies. Microelectron Reliab 43(2):269–277. https://doi.org/10.1016/S0026-2714(02)00314-1

Wang Y, Xu L, Li D, Wang J, Shi L, Hu D (2012) Sphere generation grinding based spherical surface marks analysis. J Shanghai Jiaotong Univ 46(5):740–745

Zheng L, Chen W, Pozzi M, Teng X, Huo D (2019) Modulation of surface wettability by vibration assisted milling. Int J Precis Eng Manuf 55:179–188. https://doi.org/10.1016/j.precisioneng.2018.09.006

Tian Y, Jin Z, Kang R, Guo D (2005) Analysis of kinematic geometry on wafer rotation grinding processes. China Mech Eng 16(20):1798–1801. https://doi.org/10.3321/j.issn:1004-132X.2005.20.004

Li G, Rahim M, Pan W, Wen C, Ding S (2020) The manufacturing and the application of polycrystalline diamond tools–a comprehensive review. J Manuf Process 56:400–416. https://doi.org/10.1016/j.jmapro.2020.05.010

Jiang J, Sun S, Wang D, Yang Y, Liu X (2020) Surface texture formation mechanism based on the ultrasonic vibration-assisted grinding process. Int J Mach Tool Manu 156:103595. https://doi.org/10.1016/j.ijmachtools.2020.103595

Wos S, Koszela W, Pawlus P (2020) The effect of graphite surface texturing on the friction reduction in dry contact. Tribol Int 151:106535. https://doi.org/10.1016/j.triboint.2020.106535

Varenberg M, Halperin G, Etsion I (2002) Different aspects of the role of wear debris in fretting wear. Wear 252(11):902–910. https://doi.org/10.1016/S0043-1648(02)00044-3

Volchok A, Halperin G, Etsion I (2002) The effect of surface regular microtopography on fretting fatigue life. Wear 253(3):509–515. https://doi.org/10.1016/S0043-1648(02)00148-5

Wos S, Koszela W, Pawlus P (2017) The effect of both surfaces textured on improvement of tribological properties of sliding elements. Tribol Int 113:182–188. https://doi.org/10.1016/j.triboint.2016.10.044

Wang X, Shi L, Dai Q, Huang W, Wang X (2018) Multi-objective optimization on dimple shapes for gas face seals. Tribol Int 123:216–223. https://doi.org/10.1016/j.triboint.2018.03.011

Podgornik B, Vilhena L, Sedlaček M, Rek Z, Žun I (2012) Effectiveness and design of surface texturing for different lubrication regimes. Meccanica 47(7):1613–1622. https://doi.org/10.1007/s11012-012-9540-7

Liu C, Zhang L (2004) Selection and effect of parts surface roughness. Mod Mach Manuf Eng 2:114–115. https://doi.org/10.3969/j.issn.1671-3133.2004.02.043

Li J, Zhu H (2009) Surface texture and its influence on tribological properties. Lubr Oil 34(2):94–97. https://doi.org/10.3969/j.issn.0254-0150.2009.02.028

Lu H, Wen J, Xiu S, Deng Y (2016) Analysis of multi-scale point grinding surface texture features and tribological properties. Mach Des Manuf 7:93–95. https://doi.org/10.3969/j.issn.1001-3997.2016.07.024

Chen S, Cheung C, Zhang F (2018) An experimental and theoretical analysis of surface generation in the ultra-precision grinding of hard and brittle materials. Int J Adv Manuf Technol 97(5):2715–2729. https://doi.org/10.1007/s00170-018-2121-8

Bhaduri D, Soo S, Aspinwall D, Novovic D, Harden P, Bohr S, Martin D (2012) A study on ultrasonic assisted creep feed grinding of nickel based superalloys. Procedia CIRP 1(1):359–364. https://doi.org/10.1016/j.procir.2012.04.064

Chen H, Tang J, Zhou W (2013) An experimental study of the effects of ultrasonic vibration on grinding surface roughness of C45 carbon steel. Int J Adv Manuf Technol 68(9):2095–2098. https://doi.org/10.1007/s00170-013-4824-1

Curtis D, Soo S, Aspinwall D, Mantle A (2016) Evaluation of workpiece surface integrity following point grinding of advanced titanium and nickel based alloys. Procedia CIRP 45:47–50. https://doi.org/10.1016/j.procir.2016.02.343

Zhao L, Zhao Q, Jin G, Kang X, Xin X (2013) Precision grinding of BK7 glasses using conditioned coarse-grained diamond wheel. Proc Inst Mech Eng B J Eng Manuf 227(10):1571–1577. https://doi.org/10.1177/0954405413488593

Zhang Q, Zhao Q, To S, Guo B (2017) Application of X- ray diffraction to study the grinding induced surface damage mechanism of WC/Co. Int J Refract Met Hard Mater 64:205–209. https://doi.org/10.1016/j.ijrmhm.2016.11.006

Liu Q, Huang G, Xu X, Fang C, Cui C (2018) Influence of grinding fiber angles on grinding of the 2D–Cf /C–SiC composites. Ceram Int 44(11):12774–12782. https://doi.org/10.1016/j.ceramint.2018.04.083

Jiang X, Guo M, Li B (2018) Active control of high-frequency tool-workpiece vibration in micro-grinding. Int J Adv Manuf Technol 94(1):1429–1439. https://doi.org/10.1007/s00170-017-1015-5

Yan Y, Xu J, Wiercigroch M (2016) Regenerative chatter in self-interrupted plunge grinding. Meccanica 51(12):3185–3202. https://doi.org/10.1007/s11012-016-0554-4

Hassui A, Diniz A (2003) Correlating surface roughness and vibration on plunge cylindrical grinding of steel. Int J Mach Tool Manu 43(8):855–862. https://doi.org/10.1016/S0890-6955(03)00049-X

Kuriyagawa T, Yosihara N, Wu Y, Syoji K (2001) Formation of vertical striped pattern on the ground surface in high-reciprocation profile grinding. Int J Jpn Soc Precis Eng 67(8):1316–1320. https://doi.org/10.2493/jjspe.67.1316

Cao H, Dörgeloh T, Riemer O, Brinksmeier E (2017) Adaptive separation of unbalance vibration in air bearing spindles. Procedia CIRP 62:357–362. https://doi.org/10.1016/j.procir.2016.06.069

Inasaki I, Karpuschewski B, Lee H (2001) Grinding chatter–origin and suppression. CIRP Ann Manuf Technol 50(2):515–534. https://doi.org/10.1016/S0007-8506(07)62992-8

Chen S, Cheung C, Zhang F, Zhao C (2018) Three-dimensional modelling and simulation of vibration marks on surface generation in ultra-precision grinding. Int J Precis Eng Manuf 53:221–235. https://doi.org/10.1016/j.precisioneng.2018.04.006

Chen S, Cheung C, Zhao C, Zhang F (2017) Simulated and measured surface roughness in high-speed grinding of silicon carbide wafers. Int J Adv Manuf Technol 91(1-4):719–730. https://doi.org/10.1007/s00170-016-9805-8

Chen J, Fang Q, Li P (2015) Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding. Int J Mach Tool Manu 91:12–23. https://doi.org/10.1016/j.ijmachtools.2015.01.003

Cao Y, Guan J, Li B, Chen X, Yang J, Gan C (2013) Modeling and simulation of grinding surface topography considering wheel vibration. Int J Adv Manuf Technol 66(5):937–945. https://doi.org/10.1007/s00170-012-4378-7

Huo F, Kang R, Li Z, Guo D (2013) Origin, modeling and suppression of grinding marks in ultra-precision grinding of silicon wafers. Int J Mach Tool Manu 66:54–65. https://doi.org/10.1016/j.ijmachtools.2012.11.006

Lang X, He Y, Tang J, Chen H (2014) Grinding force model based on prominent height of abrasive submitted to Rayleigh distribution. J Cent South Univ 45(10):3386–3391

Hou Z, Komanduri R (2003) On the mechanics of the grinding process-Part I. Stochastic nature of the grinding process. Int J Mach Tool Manu 43(15):1579–1593. https://doi.org/10.1016/S0890-6955(03)00186-X

Huo F, Guo D, Kang R, Feng G (2012) Nanogrinding of SiC wafers with high flatness and low subsurface damage. J Trans Nonferrous Metal Soc 22(12):3027–3033. https://doi.org/10.1016/S1003-6326(11)61566-5

Zhao Q, Yu G, Ekkard B, Oltmann R, Kal R (2006) Ultra—precision grinding of BK7 optical glass using coarse-grained electroplated diamond wheel. Chin J Mech Eng 42(10):95–101. https://doi.org/10.3321/j.issn:0577-6686.2006.10.016

Zhao Q, Yao J, Chen J (2009) ELID assisted grinding of optical glass with fine and coarse grained copper-resin bonded. Adv Mater Res 76-78:76–81. https://doi.org/10.4028/www.scientific.net/AMR.76-78.76

Zhao Q, Chen J, Huang H, Fang X (2011) Grinding damage of BK7 using copper-resin bond coarse-grained diamond wheel. Int J Precis Eng Manuf 12(1):5–13. https://doi.org/10.1007/s12541-011-0001-3

Wu M, Guo B, Zhao Q, He P (2008) Precision grinding of a microstructured surface on hard and brittle materials by a microstructured coarse-grained diamond grinding wheel. Ceram Int 44(7):8026–8034. https://doi.org/10.1016/j.ceramint.2018.01.243

Zhao Q, Guo B (2015) Ultra-precision grinding of optical glasses using mono-layer nickel electroplated coarse-grained diamond wheels. Part 1: ELID assisted precision conditioning of grinding wheels. Precis Eng 39:56–66. https://doi.org/10.1016/j.precisioneng.2014.07.006

Zhao Q, Guo B (2015) Ultra-precision grinding of optical glasses using mono-layer nickel electroplated coarse-grained diamond wheels. Part 2: Investigation of profile and surface grinding. Precis Eng 39:67–78. https://doi.org/10.1016/j.precisioneng.2014.07.007

Zhao G, Lv Y, Li Y, Li W (2018) Simulation of the surface roughness with grinding wheel of ordered abrasive pattern. Mach Des Manuf 3:223–225. https://doi.org/10.3969/j.issn.1001-3997.2018.03.066

Guo B, Jin Q, Zhao Q, Wu M, Zeng Z (2016) Research progress of grinding technology with surface structured wheels. J Harbin Inst Technol 48(7):1–13. https://doi.org/10.11918/j.issn.0367-6234.2016.07.001

Oliveira J, Bottene A, França T (2010) A novel dressing technique for texturing of ground surfaces. J CIRP Ann Manuf Technol 59(1):361–364. https://doi.org/10.1016/j.cirp.2010.03.119

Stȩpień P (2009) Regular surface texture generated by special grinding process. J Manuf Sci E T ASME 131(1):123–136. https://doi.org/10.1115/1.3070511

Stepien P (2008) Mechanism of grinding wheel surface reproduction in regular surface texture generation. Surf Eng 24(3):219–225. https://doi.org/10.1179/174329408X282596

Stepien P (2011) Deterministic and stochastic components of regular surface texture generated by a special grinding process. Wear 271(3):514–518. https://doi.org/10.1016/j.wear.2010.03.027

Shan J, Xu L, Hu D (2016) Sphericity error estimation method based on spherical grinding marks. J Shanghai Jiaotong Univ 50(5):654–659. https://doi.org/10.16183/j.cnki.jsjtu.2016.05.002

Hou H, Jiang T, Hu D (2011) Space trajectory analysis and parameter selection on large spherical precision grinding. China Mech Eng 22(7):757–761

Hou H, Li D, Wei C, Hu D, Xu K (2011) Process optimization in two spherical surface grinding processes using trajectories analysis. Proc Inst Mech Eng B J Eng Manuf 225(12):2177–2188. https://doi.org/10.1177/0954405411411404

Trmal G, Holesovsky F (2001) Wave-shift and its effect on surface quality in super-abrasive grinding. Int J Mach Tool Manuf 41(7):979–989. https://doi.org/10.1016/S0890-6955(00)00116-4

Chen Z, Wei X, Ren Q, Xie X (2009) Analysis and simulation of grinding motion on large size wafer self-rotating grinding. Diamond Abras Eng 2009(5):1–12. https://doi.org/10.3969/j.issn.1006-852X.2009.05.001

Hwang Y, Ha K, Kim Y, Kim J, Lee S (2016) Suppression of the inflection pattern in ultraprecision grinding through the minimization of the hydrodynamic force using a toothed wheel. Int J Mach Tool Manuf 100:105–115. https://doi.org/10.1016/j.ijmachtools.2015.10.009

Sun W, Pei Z, Fisher G (2005) Fine grinding of silicon wafers: effects of chuck shape on grinding marks. Int J Mach Tool Manuf 45(6):673–686. https://doi.org/10.1016/j.ijmachtools.2004.09.020

Wang S, Hu Y, Feng Z (2010) Effect of surface roughness on sliding friction in lubricated contacts-reciprocal experiment study. Mod Manuf Eng 2010(3):21–24. https://doi.org/10.3969/j.issn.1671-3133.2010.03.007

Menezes P, Kishore KS (2006) Effect of directionality of unidirectional grinding marks on friction and transfer layer formation of Mg on steel using inclined scratch test. Mater Sci Eng A Struct 429(1):149–160. https://doi.org/10.1016/j.msea.2006.05.080

Chao C, Wang H, Kong N, Xiu S (2014) Point-grinding texture characteristics and its influence on tribological property of parts. Lubr Eng 39(9):4–7. https://doi.org/10.3969/j.issn.0254-0150.2014.09.002

Du Y, Zhang K (2017) Influence of grinding textures on tribological property and lubricating oil matching based on finite element simulation. Surf Technol 46(7):122–127. https://doi.org/10.16490/j.cnki.issn.1001-3660.2017.07.020

Zhang Y, Guo Y, Zhuang S (2003) Influence of chatter vibration on the ultreprecision machining accuracy of aspheric surface. Diamond Abras Eng 3:17–20. https://doi.org/10.3969/j.issn.1006-852X.2003.03.004

Chidambaram S, Pei Z, Kassir S (2003) Fine grinding of silicon wafers: a mathematical model for grinding marks. Int J Mach Tool Manuf 43(15):1595–1602. https://doi.org/10.1016/S0890-6955(03)00187-1

Pei Z, Alan S (2002) Fine grinding of silicon wafers: designed experiments. Int J Mach Tool Manu 42(3):395–404. https://doi.org/10.1016/S0890-6955(01)00123-7

Wang Y, Liu K, Ning J, Zhang Z (2016) Experimental analysis on grinding burn for bearing rings raceway made of G95 Cr18. Bearing 12:23–27. https://doi.org/10.3969/j.issn.1000-3762.2016.12.007

Lin X, Ma K, Huang H, Xu Q (2015) Distribution characteristics of surface roughness and waviness error in axisymmetric aspheric grinding. High Power Laser Part Beams 27(9):155–159. https://doi.org/10.11884/HPLPB201527.092013

Gao S, Kang R, Dong Z, Guo D (2013) Subsurface damage distribution in silicon wafers ground with wafer rotation grinding method. J Mech Eng 49(3):88–94. https://doi.org/10.3901/JME.2013.03.088