Aerosol optical depth retrieval over the city of Abu Dhabi, United Arab Emirates (UAE) using Landsat-8 OLI images

Atmospheric Pollution Research - Tập 10 - Trang 1075-1083 - 2019
Khalid Omari1, Abdelgadir Abuelgasim2, Khawla Alhebsi2
1Geosciences, Water & Environment Laboratory, Water Center, Faculty of Sciences, Mohammed V University, 4-Ibn Batouta Avenue, B.P. 1014, Rabat, Morocco
2Department of Geography and Urban Planning, College of Humanities and Social Sciences, National Space Science and Technology Center, United Arab Emirates University, Al-Ain, AbuDhabi 15551, United Arab Emirates

Tài liệu tham khảo

Ackerman, 2000, Reduction of tropical cloudiness by scoot, Science, 288, 1042, 10.1126/science.288.5468.1042 Albaloushi, 2016, Investigations on the seasonal and inter-annual variations of the atmospheric aerosol optical depth in the United Arab Emirates using MODIS satellite data Atkinson, 2001, Acute effects of particular air pollution on respiratory admissions, Am. J. Respir. Crit. Care Med., 164, 1860, 10.1164/ajrccm.164.10.2010138 Bilal, 2013, A Simplified high-resolution MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces, Remote Sens. Environ., 136, 135, 10.1016/j.rse.2013.04.014 Bodhaine, 1999, Rayleigh optical depth calculations, J. Atmos. Ocean. Technol., 16, 1854, 10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2 Bucholtz, 1995, Rayleigh-scattering calculations for the terrestrial atmosphere, Appl. Opt., 34, 2765, 10.1364/AO.34.002765 Hagolle, 2015, A multi-temporal and multi-spectral to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, Landsat, VENμs and Sentinel-2 images, Rem. Sens., 7, 2668, 10.3390/rs70302668 Haywood, 1997, General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol, J. Clim., 10, 1562, 10.1175/1520-0442(1997)010<1562:GCMCOT>2.0.CO;2 He, 2010, Validation of MODIS derived aerosol optical depth over the Yangtze River Delta in China, Remote Sens. Environ., 114, 1649, 10.1016/j.rse.2010.02.015 Holben, 1998, AERONET a federated instrument network and data archive for aerosol characterization, Rem. Sens. Environ., 66, 1, 10.1016/S0034-4257(98)00031-5 Holben, 2001, An emerging ground-based aerosol climatology: aerosol Optical Depth from AERONET, J. Geophys. Res., 106 Hsu, 2006, Deep blue retrievals of Asian aerosol properties during ACE-Asia, IEEE Trans. Geosci. Remote Sens., 44, 3180, 10.1109/TGRS.2006.879540 Hsu, 2013, Enhanced deep blue aerosol retrieval algorithm: the second generation, J. Geophys. Res. Atmos., 118, 9296, 10.1002/jgrd.50712 Hsu, 1996, Detection of biomass burning smoke from TOMS measurements, Geophys. Res. Lett., 23, 745, 10.1029/96GL00455 Hsu, 2004, Aerosol properties over bright-reflecting source regions, IEEE Trans. Geosci. Remote Sens., 42, 557, 10.1109/TGRS.2004.824067 Irons, 2012, The next landsat satellite: the landsat 1205 data continuity mission, Remote Sens. Environ., 122, 11, 10.1016/j.rse.2011.08.026 Kaufman, 1997, Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res. Atmos., 102, 17051, 10.1029/96JD03988 Kaufman, 1994, Detection of forests using mid-IR reflectance: an application for aerosol studies, IEEE Trans. Geosci. Remote Sens., 32, 672, 10.1109/36.297984 Lee, 2011, A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations, Atmos. Chem. Phys., 11, 7991, 10.5194/acp-11-7991-2011 Levy, 2007, Global aerosol optical properties and application to MODIS aerosol retrieval over land, J. Geophys. Res. Atmos., 112, 10.1029/2006JD007815 Levy, 2013, The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989, 10.5194/amt-6-2989-2013 Li, 2007, Aerosol optical properties and their radiative effects in northern China, J. Geophys. Res., 112, D22S12, 10.1029/2006JD007382 Li, 2014, An improved dark object method to retrieve 500m resolution AOT (Aerosol optical thickness) image from MODIS data: a case study in the Pearl River Delta area, China, ISPRS J. Photogramm. Remote Sens., 89, 1, 10.1016/j.isprsjprs.2013.12.008 Liu, 2009, Estimating regional spatial and temporal variability of PM2. 5 concentrations using satellite data, meteorology and land use information, Environ. Health Perspect., 117, 2009 Liu, 2004, Mapping annual mean ground-level PM2.5 concentrations using multiangle imaging spectroradiometer aerosol optical thickness over the contiguous United States, J. Geophys. Res., 109, D22206 Lyapustin, 2011, Multi-angle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm, J. Geophys. Res., 116 Omari, 2013, Retrieval of canopy biophysical parameters inverting PROFLAIR leaf-canopy reflectance model using the LUT approach, Appl. Earth Obs. Remote Sens. JSTARS, 6, 715, 10.1109/JSTARS.2013.2240264 Pahlevan, 2013, Leveraging EO-1 to evaluate capability of new generation of landsat sensors for coastal/inland water studies, selected topics in applied Earth observations and remote sensing, IEEE J., 6, 360 Pope, 2006, Lung cancers, cardiopulmonary mortality, and long term exposure to fine particulate air pollution, JAMA, 2002, 1132 Remer, 2005, The MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 62, 947, 10.1175/JAS3385.1 Remer, 2007 Riffler, 2010, Validation of a modified AVHRR aerosol optical depth retrieval algorithm over central Europe, Atmos. Meas. Tech., 3, 1255, 10.5194/amt-3-1255-2010 Sayer, 2012, Estimating marine aerosol particle volume and number from maritime aerosol network data, Atmos. Chem. Phys., 12, 8889, 10.5194/acp-12-8889-2012 Sun, 2016, Aerosol optical depth retrieval over bright areas using landsat 8 oli images, Rem. Sens., 8, 23, 10.3390/rs8010023 Sun, 2017, High resolution aerosol optical depth retrieval using Gaofe n-1 WFV camera, Rem. Sens., 9, 89, 10.3390/rs9010089 Tanré, 1979, Atmospheric modeling for space measurements of ground reflectance, including bidirectional properties, Appl. Opt., 18, 3587, 10.1364/AO.18.003587 Tian, 2016, Retrieval of aerosol optical depth over arid areas from MODIS data, Atmosphere, 7, 1 Tian, 2018, Retrieval of aerosol optical depth in the arid or semiarid region of northern Xinjiang, China, Rem. Sens., 10, 197, 10.3390/rs10020197 Tirelli, 2015, Evaluation of the aerosol type effect on the surface reflectance retrieval using CHRIS/PROBA images over land, ISPRS-Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci., XL, 1311, 10.5194/isprsarchives-XL-7-W3-1311-2015 Vermote, 1997, Second simulation of the satellite signal in the solar spectrum, 6S: an overview, IEEE Trans. Geosci. Remote Sens., 35, 675, 10.1109/36.581987 Wang, 2003, Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implication for air quality studies, Geophys. Res. Lett., 30, 21, 10.1029/2003GL018174 Wang, 2010, Assessment and comparison of three years of Terra and Aqua MODIS Aerosol Optical Depth Retrieval (C005) in Chinese terrestrial regions, Atmos. Res., 97, 229, 10.1016/j.atmosres.2010.04.004 Wei, 2018, An improved high-spatial-resolution aerosol retrieval algorithm for MODIS images over land, J. Geophys. Res. Atmos., 123, 10.1029/2017JD027795 Wei, 2018, Comparison and evaluation of different MODIS aerosol optical depth products over the Beijing-Tianjin-Hebei Region in China, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 835, 10.1109/JSTARS.2016.2595624 Wei, 2017, A simple and universal aerosol retrieval algorithm for Landsat series images over complex surfaces, J. Geophys. Res. Atmos., 122 World Urbanization Prospects, 2019 Zhong, 2017, An improved aerosol optical depth retrieval algorithm for moderate to high spatial resolution optical remotely sensed imagery, Rem. Sens., 9, 555, 10.3390/rs9060555