Aerosol-cloud-precipitation interaction during some convective events over southwestern Iran using the WRF model

Atmospheric Pollution Research - Tập 14 - Trang 101667 - 2023
Parisa Fattahi Masrour1, Maryam Rezazadeh1
1Dept. of Marine and Atmospheric Science (Non-Biologic), Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran

Tài liệu tham khảo

Albrecht, 1989, Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227, 10.1126/science.245.4923.1227 Alizadeh-Choobari, 2017, Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation, Atmos. Res., 185, 53, 10.1016/j.atmosres.2016.10.021 Altaratz, 2014, Cloud invigoration by aerosols—coupling between microphysics and dynamics, Atmos. Res., 140, 38, 10.1016/j.atmosres.2014.01.009 Andrea, 2008, Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth Sci. Rev., 89, 13, 10.1016/j.earscirev.2008.03.001 Andreae, 2004, Smoking rain clouds over the Amazon, Science, 303, 1337, 10.1126/science.1092779 Archer-Nicholls, 2016, Aerosol–radiation–cloud interactions in a regional coupled model: the effects of convective parameterisation and resolution, Atmos. Chem. Phys., 16, 5573, 10.5194/acp-16-5573-2016 Boucher, 2013, Clouds and aerosols, 571 Chakraborty, 2016, Relative influence of meteorological conditions and aerosols on the lifetime of mesoscale convective systems, Proc. Natl. Acad. Sci. USA, 113, 7426, 10.1073/pnas.1601935113 Charlson, 1987, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326, 655, 10.1038/326655a0 Colarco, 2010, Online simulations of global aerosol distributions in the NASA GEOS‐4 model and comparisons to satellite and ground‐based aerosol optical depth, J. Geophys. Res. Atmos., 115, 10.1029/2009JD012820 Da Silva, 2018, Aerosol indirect effects on summer precipitation in a regional climate model for the Euro-Mediterranean region, Ann. Geophys., 36, 321, 10.5194/angeo-36-321-2018 Donner, 2003, Boundary layer control on convective available potential energy: implications for cumulus parameterization, J. Geophys. Res. Atmos., 108, 10.1029/2003JD003773 Fan, 2013, Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds, Proc. Natl. Acad. Sci. USA, 110, E4581, 10.1073/pnas.1316830110 Fan, 2015, Improving representation of convective transport for scale‐aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics, J. Geophys. Res. Atmos., 120, 3485, 10.1002/2014JD022142 Fan, 2012, Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection, Geophys. Res. Lett., 39, 10.1029/2012GL051851 Fan, 2018, Substantial convection and precipitation enhancements by ultrafine aerosol particles, Science, 359, 411, 10.1126/science.aan8461 Fan, 2009, Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds, J. Geophys. Res. Atmos., 114, 10.1029/2009JD012352 Geerts, 2017, The 2015 plains elevated convection at night field project, Bull. Am. Meteorol. Soc., 98, 767, 10.1175/BAMS-D-15-00257.1 Ginoux, 2010, Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level 2 data, J. Geophys. Res. Atmos., 115, 10.1029/2009JD012398 Grant, 2015, Cold pool and precipitation responses to aerosol loading: modulation by dry layers, J. Atmos. Sci., 72, 1398, 10.1175/JAS-D-14-0260.1 Hersbach, 2018, ERA5 hourly data on pressure levels from 1979 to present, Copernicus climate change service (c3s) climate data store (cds), 10 Holloway, 2009, Moisture vertical structure, column water vapor, and tropical deep convection, J. Atmos. Sci., 66, 1665, 10.1175/2008JAS2806.1 Hong, 2006, A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Weather Rev., 134, 2318, 10.1175/MWR3199.1 Iacono, 2008, Radiative forcing by long‐lived greenhouse gases: calculations with the AER radiative transfer models, J. Geophys. Res. Atmos., 113, 10.1029/2008JD009944 Jiménez, 2012, A revised scheme for the WRF surface layer formulation, Mon. Weather Rev., 140, 898, 10.1175/MWR-D-11-00056.1 Kain, 2004, The Kain–Fritsch convective parameterization: an update, J. Appl. Meteorol., 43, 170, 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2 Kant, 2019, A seasonal analysis of aerosol-cloud-radiation interaction over Indian region during 2000-2017, Atmos. Environ., 201, 212, 10.1016/j.atmosenv.2018.12.044 Kant, 2019, Long-term study of aerosol–cloud–precipitation interaction over the eastern part of India using satellite observations during pre-monsoon season, Theor. Appl. Climatol., 136, 605, 10.1007/s00704-018-2509-2 Kaufman, 2006, Smoke and pollution aerosol effect on cloud cover, Science, 313, 655, 10.1126/science.1126232 Khain, 2004, Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: model description and possible applications, J. Atmos. Sci., 61, 2963, 10.1175/JAS-3350.1 Khain, 2005, Aerosol impact on the dynamics and microphysics of deep convective clouds, Q. J. R. Meteorol. Soc.: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 131, 2639, 10.1256/qj.04.62 Khain, 2009, Notes on state-of-the-art investigations of aerosol effects on precipitation: a critical review, Environ. Res. Lett., 4, 10.1088/1748-9326/4/1/015004 Khain, 2015, Representation of microphysical processes in cloud‐resolving models: spectral (bin) microphysics versus bulk parameterization, Rev. Geophys., 53, 247, 10.1002/2014RG000468 Khain, 2008, Factors determining the impact of aerosols on surface precipitation from clouds: an attempt at classification, J. Atmos. Sci., 65, 1721, 10.1175/2007JAS2515.1 Koren, 2005, Aerosol invigoration and restructuring of Atlantic convective clouds, Geophys. Res. Lett., 32, 10.1029/2005GL023187 Koren, 2008, Smoke invigoration versus inhibition of clouds over the Amazon, Science, 321, 946, 10.1126/science.1159185 Koren, 2010, Aerosol-induced changes of convective cloud anvils produce strong climate warming, Atmos. Chem. Phys., 10, 5001, 10.5194/acp-10-5001-2010 Kumar, 2013, The four cumulus cloud modes and their progression during rainfall events: AC‐band polarimetric radar perspective, J. Geophys. Res. Atmos., 118, 8375, 10.1002/jgrd.50640 Lebo, 2014, Dynamical effects of aerosol perturbations on simulated idealized squall lines, Mon. Weather Rev., 142, 991, 10.1175/MWR-D-13-00156.1 Lebo, 2011, Theoretical basis for convective invigoration due to increased aerosol concentration, Atmos. Chem. Phys., 11, 5407, 10.5194/acp-11-5407-2011 Lebo, 2014, The sensitivity of a numerically simulated idealized squall line to the vertical distribution of aerosols, J. Atmos. Sci., 71, 4581, 10.1175/JAS-D-14-0068.1 Lebo, 2012, Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment?, Atmos. Chem. Phys., 12, 9941, 10.5194/acp-12-9941-2012 Lee, 2014, Modeling the influences of aerosols on pre-monsoon circulation and rainfall over Southeast Asia, Atmos. Chem. Phys., 14, 6853, 10.5194/acp-14-6853-2014 Lee, 2012, Effect of aerosol on cloud–environment interactions in trade cumulus, J. Atmos. Sci., 69, 3607, 10.1175/JAS-D-12-026.1 Li, 2008, Implementation of a two‐moment bulk microphysics scheme to the WRF model to investigate aerosol‐cloud interaction, J. Geophys. Res. Atmos., 113, 10.1029/2007JD009361 Li, 2016, Aerosol and monsoon climate interactions over Asia, Rev. Geophys., 121, 4386 Li, 2011, Long-term impacts of aerosols on the vertical development of clouds and precipitation, Nat. Geosci., 4, 888, 10.1038/ngeo1313 Lin, 2006, The effect of environmental conditions on tropical deep convective systems observed from the TRMM satellite, J. Clim., 19, 5745, 10.1175/JCLI3940.1 Lindzen, 1987, On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics, J. Atmos. Sci., 44, 2418, 10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2 McBride, 1999, Relationships between stability and monsoon convection, J. Atmos. Sci., 56, 24, 10.1175/1520-0469(1999)056<0024:RBSAMC>2.0.CO;2 Menon, 2002, GCM simulations of the aerosol indirect effect: sensitivity to cloud parameterization and aerosol burden, J. Atmos. Sci., 59, 692, 10.1175/1520-0469(2002)059<0692:GSOTAI>2.0.CO;2 Moncrieff, 1978, The dynamical structure of two‐dimensional steady convection in constant vertical shear, Q. J. R. Meteorol. Soc., 104, 543, 10.1002/qj.49710444102 Morrison, 2012, On the robustness of aerosol effects on an idealized supercell storm simulated with a cloud system-resolving model, Atmos. Chem. Phys., 12, 7689, 10.5194/acp-12-7689-2012 Myhre, 2013, Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853, 10.5194/acp-13-1853-2013 Niu, 2012, Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics, Atmos. Chem. Phys., 12, 8491, 10.5194/acp-12-8491-2012 Peng, 2016, Systematic changes in cloud radiative forcing with aerosol loading for deep clouds in the tropics, J. Atmos. Sci., 73, 231, 10.1175/JAS-D-15-0080.1 Platnick, 1994, Remote sensing the susceptibility of cloud albedo to changes in drop concentration, Atmos. Res., 34, 85, 10.1016/0169-8095(94)90082-5 Ramanathan, 2001, Aerosols, climate, and the hydrological cycle, Science, 294, 2119, 10.1126/science.1064034 Rao, 2020, Consistent signal of aerosol indirect and semi-direct effect on water clouds in the oceanic regions adjacent to the Indian subcontinent, Atmos. Res., 232, 10.1016/j.atmosres.2019.104677 Rosenfeld, 2011, Why do tornados and hailstorms rest on weekends?, J. Geophys. Res. Atmos., 116, 10.1029/2011JD016214 Rosenfeld, 1998, Satellite-based insights into precipitation formation processes in continental and maritime convective clouds, Bull. Am. Meteorol. Soc., 79, 2457, 10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2 Rosenfeld, 2000, Deep convective clouds with sustained supercooled liquid water down to-37.5 C, Nature, 405, 440, 10.1038/35013030 Rosenfeld, 1999, TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall, Geophys. Res. Lett., 26, 3105, 10.1029/1999GL006066 Rosenfeld, 2000, Suppression of rain and snow by urban and industrial air pollution, Science, 287, 1793, 10.1126/science.287.5459.1793 Rosenfeld, 2014, Satellite Retrieving CCN (S) by Using Clouds as CCN Chambers, A12A Rosenfeld, 2008, Flood or drought: how do aerosols affect precipitation?, Science, 321, 1309, 10.1126/science.1160606 Rosenfeld, 2001, Desert dust suppressing precipitation: a possible desertification feedback loop, Proc. Natl. Acad. Sci. USA, 98, 5975, 10.1073/pnas.101122798 Saleeby, 2015, Impacts of cloud droplet–nucleating aerosols on shallow tropical convection, J. Atmos. Sci., 72, 1369, 10.1175/JAS-D-14-0153.1 Schiro, 2016, Deep convection and column water vapor over tropical land versus tropical ocean: a comparison between the Amazon and the tropical western Pacific, J. Atmos. Sci., 73, 4043, 10.1175/JAS-D-16-0119.1 Seifert, 2006, A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: model description, Meteorol. Atmos. Phys., 92, 45, 10.1007/s00703-005-0112-4 Seinfeld, 2016, Improving our fundamental understanding of the role of aerosol− cloud interactions in the climate system, Proc. Natl. Acad. Sci. USA, 113, 5781, 10.1073/pnas.1514043113 Shapiro, 2018, Mesoscale ascent in nocturnal low-level jets, J. Atmos. Sci., 75, 1403, 10.1175/JAS-D-17-0279.1 Shem, 2009, On the impact of urbanization on summertime thunderstorms in Atlanta: two numerical model case studies, Atmos. Res., 92, 172, 10.1016/j.atmosres.2008.09.013 Sherwood, 2004, Deep convective cloud‐top heights and their thermodynamic control during CRYSTAL‐FACE, J. Geophys. Res. Atmos., 109, 10.1029/2004JD004811 Storer, 2013, Microphysical processes evident in aerosol forcing of tropical deep convective clouds, J. Atmos. Sci., 70, 430, 10.1175/JAS-D-12-076.1 Storer, 2010, Modeling aerosol impacts on convective storms in different environments, J. Atmos. Sci., 67, 3904, 10.1175/2010JAS3363.1 Tao, 2012, Impact of aerosols on convective clouds and precipitation, Rev. Geophys., 50, 10.1029/2011RG000369 Tao, 2007, Role of atmospheric aerosol concentration on deep convective precipitation: cloud‐resolving model simulations, J. Geophys. Res. Atmos., 112, 10.1029/2007JD008728 Thompson, 2014, A study of aerosol impacts on clouds and precipitation development in a large winter cyclone, J. Atmos. Sci., 71, 3636, 10.1175/JAS-D-13-0305.1 Trier, 2017, Mesoscale vertical motions near nocturnal convection initiation in PECAN, Mon. Weather Rev., 145, 2919, 10.1175/MWR-D-17-0005.1 Twomey, 1977 Twomey, 1977, The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 1149, 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2 Waite, 2010, The deepening of cumulus convection by moisture preconditioning, 6988 Wang, 2013, Sensitivity of remote aerosol distributions to representation of cloud–aerosol interactions in a global climate model, Geosci. Model Dev. (GMD), 6, 765, 10.5194/gmd-6-765-2013 Wang, 2016, Impact of anthropogenic aerosols on summer precipitation in the Beijing–Tianjin–Hebei urban agglomeration in China: regional climate modeling using WRF-Chem, Adv. Atmos. Sci., 33, 753, 10.1007/s00376-015-5103-x Wang, 2016, Impacts of cloud overlap assumptions on radiative budgets and heating fields in convective regions, Atmos. Res., 84, 122 Wang, 2015 Wang, 2014, Distinct effects of anthropogenic aerosols on tropical cyclones, Nat. Clim. Change, 4, 368, 10.1038/nclimate2144 Yang, 2016, Distinct impact of different types of aerosols on surface solar radiation in China, J. Geophys. Res. Atmos., 121, 6459, 10.1002/2016JD024938 Zhang, 2002, Convective quasi‐equilibrium in midlatitude continental environment and its effect on convective parameterization, J. Geophys. Res. Atmos., 107, 10.1029/2001JD001005 Zhang, 2005, A microphysical parameterization for convective clouds in the ECHAM5 climate model: single‐column model results evaluated at the Oklahoma Atmospheric Radiation Measurement Program site, J. Geophys. Res. Atmos., 110, 10.1029/2004JD005128 Zhang, 2019, The mechanism and predictability of an elevated convection initiation event in a weak-lifting environment in central-eastern China, Mon. Weather Rev., 147, 1823, 10.1175/MWR-D-18-0400.1 Zhang, 2010, Mechanisms affecting the transition from shallow to deep convection over land: inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains site, J. Atmos. Sci., 67, 2943, 10.1175/2010JAS3366.1