Aerodynamic and aeroacoustic performance of a pitching foil with trailing edge serrations at a high Reynolds number
Theoretical and Computational Fluid Dynamics - Trang 1-20 - 2023
Tóm tắt
The aerodynamic and aeroacoustic performance of a low-aspect-ratio (
$$\hbox {AR}=0.2$$
) pitching foil during dynamic stall are investigated numerically with focus on the effects of trailing edge serrations. A hybrid method coupling an immersed boundary method for incompressible flows with the Ffowcs Williams–Hawkings acoustic analogy is employed. Large eddy simulation and turbulent boundary layer equation wall model are also employed to capture the turbulent effects. A modified NACA0012 foil with a rectangular trailing edge flap attached to the trailing edge (baseline case) undergoing pitching motion is considered. Trailing edge serrations are applied to the trailing edge flap and their effects on the aerodynamic and aeroacoustic performance of the oscillating airfoil are considered by varying the wave amplitude (
$$2h^*= 0.05, 0.1$$
, and 0.2) at a Reynolds number of 100,000 and a Mach number of 0.05. It is found that the reduction of the sound pressure level at the dimensionless frequency band
$$St_{b}\in [1.25,4]$$
can be over 4 dB with the presence of the trailing edge serrations (
$$2h^*=0.1$$
), while the aerodynamic performance and its fluctuations are not significantly altered except a reduction around 10% in the negative moment coefficient and it fluctuations. This is due to the reduction of the average spanwise coherence function and the average surface pressure with respect to that of the baseline case, suggesting the reduction of the spanwise coherence and the noise source may result in the noise reduction. Analysis of the topology of the near wake coherent structure for
$$2h^*=0.1$$
reveals that the alignment of the streamwise-oriented vortex with the serration edge may reduce the surface pressure fluctuation.
Tài liệu tham khảo
McCroskey, W.J.: Unsteady airfoils. Annu. Rev. Fluid Mech. 14(1), 285–311 (1982)
Carr, L.W.: Progress in analysis and prediction of dynamic stall. J. Aircr. 25(1), 6–17 (1988)
Ericsson, L., Reding, J.: Fluid mechanics of dynamic stall part I. Unsteady flow concepts. J. Fluids Struct. 2(1), 1–33 (1988)
Visbal, M.R.: Analysis of the onset of dynamic stall using high-fidelity large-eddy simulations. In: 52nd Aerospace Sciences Meeting, p. 0591 (2014)
Kramer, M.: Increase in the maximum lift of an airplane wing due to a sudden increase in its effective angle of attack resulting from a gust. Technical Report NACA-TM-678, National Aeronautics and Space Administration (1932)
Harris, F.D., Pruyn, R.R.: Blade stall-half fact, half fiction. J. Am. Helicopter Soc. 13(2), 27–48 (1968)
Visbal, M.R.: Numerical investigation of deep dynamic stall of a plunging airfoil. AIAA J. 49(10), 2152–2170 (2011)
Visbal, M.R.: Dynamic stall of a constant-rate pitching airfoil. J. Aircr. 27(5), 400–407 (1990)
Larsen, J.W., Nielsen, S.R., Krenk, S.: Dynamic stall model for wind turbine airfoils. J. Fluids Struct. 23(7), 959–982 (2007)
Nagarajan, S., Hahn, S., Lele, S.: Prediction of sound generated by a pitching airfoil: a comparison of RANS and LES. In: 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), p. 2516 (2006)
Zhou, T., Sun, Y., Fattah, R., Zhang, X., Huang, X.: An experimental study of trailing edge noise from a pitching airfoil. J. Acoust. Soc. Am. 145(4), 2009–2021 (2019)
McCroskey, W.J., Carr, L.W., McAlister, K.W.: Dynamic stall experiments on oscillating airfoils. AIAA J. 14(1), 57–63 (1976)
Lorber, P.F., Carta, F.O.: Airfoil dynamic stall at constant pitch rate and high Reynolds number. J. Aircr. 25(6), 548–556 (1988)
Leishman, J.: Dynamic stall experiments on the NACA 23012 aerofoil. Exp. Fluids 9(1), 49–58 (1990)
Mulleners, K., Raffel, M.: Dynamic stall development. Exp. Fluids 54(2), 1–9 (2013)
Ekaterinaris, J.A., Platzer, M.F.: Computational prediction of airfoil dynamic stall. Prog. Aerosp. Sci. 33(11–12), 759–846 (1998)
Visbal, M.R., Shang, J.: Investigation of the flow structure around a rapidly pitching airfoil. AIAA J. 27(8), 1044–1051 (1989)
Ghia, K., Yang, J., Osswald, G., Ghia, U.: Study of role of unsteady separation in formation of dynamic stall vortex. In: 30th Aerospace Sciences Meeting and Exhibit, p. 196 (1992)
Choudhuri, P.G., Knight, D., Visbal, M.: Two-dimensional unsteady leading-edge separation on a pitching airfoil. AIAA J. 32(4), 673–681 (1994)
Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Comput. Fluids 39(9), 1529–1541 (2010)
Visbal, M.R., Garmann, D.J.: Analysis of dynamic stall on a pitching airfoil using high-fidelity large-eddy simulations. AIAA J. 56(1), 46–63 (2018)
Mohamed, K., Nadarajah, S., Paraschivoiu, M.: Detached-eddy simulation of a wing tip vortex at dynamic stall conditions. J. Aircr. 46(4), 1302–1313 (2009)
Mayer, Y.D., Zang, B., Azarpeyvand, M.: Aeroacoustic investigation of an oscillating airfoil in the pre-and post-stall regime. Aerosp. Sci. Technol. 103, 105880 (2020)
Raus, D., Cotté, B., Monchaux, R., Sicard, L., Jondeau, E., Souchotte, P., Roger, M.: Experimental characterization of the noise generated by an airfoil oscillating above stall. In: AIAA AVIATION 2021 FORUM, p. 2291 (2021)
Gerontakos, P., Lee, T.: Dynamic stall flow control via a trailing-edge flap. AIAA J. 44(3), 469–480 (2006)
Samara, F., Johnson, D.A.: Dynamic stall on pitching cambered airfoil with phase offset trailing edge flap. AIAA J. 58(7), 2844–2856 (2020)
Carr, L., McAlister, K.: The effect of a leading-edge slat on the dynamic stall of an oscillating airfoil. In: Aircraft Design, Systems and Technology Meeting, p. 2533 (1983)
Joo, W., Lee, B.-S., Yee, K., Lee, D.-H.: Combining passive control method for dynamic stall control. J. Aircr. 43(4), 1120–1128 (2006)
Heine, B., Mulleners, K., Joubert, G., Raffel, M.: Dynamic stall control by passive disturbance generators. AIAA J. 51(9), 2086–2097 (2013)
Sarradj, E., Fritzsche, C., Geyer, T.: Silent owl flight: bird flyover noise measurements. AIAA J. 49(4), 769–779 (2011)
Jaworski, J.W., Peake, N.: Aeroacoustics of silent owl flight. Annu. Rev. Fluid Mech. 52, 395–420 (2020)
Li, D., Liu, X., Hu, F., Wang, L.: Effect of trailing-edge serrations on noise reduction in a coupled bionic aerofoil inspired by barn owls. Bioinspir. Biomim. 15(1), 016009 (2019)
Sandberg, R., Jones, L.: Direct numerical simulations of low Reynolds number flow over airfoils with trailing-edge serrations. J. Sound Vib. 330(16), 3818–3831 (2011)
Jones, L., Sandberg, R.: Acoustic and hydrodynamic analysis of the flow around an aerofoil with trailing-edge serrations. J. Fluid Mech. 706, 295–322 (2012)
Moreau, D.J., Doolan, C.J.: Noise-reduction mechanism of a flat-plate serrated trailing edge. AIAA J. 51(10), 2513–2522 (2013)
Moreau, D., Doolan, C.: The generation of tonal noise from sawtooth trailing-edge serrations at low Reynolds numbers. Aeronaut. J. 120(1228), 971–983 (2016)
Celik, A., Bowen, J.L., Azarpeyvand, M.: Effect of trailing-edge bevel on the aeroacoustics of a flat-plate. Phys. Fluids 32(10), 105116 (2020)
Zhou, P., Liu, Q., Zhong, S., Fang, Y., Zhang, X.: A study of the effect of serration shape and flexibility on trailing edge noise. Phys. Fluids 32(12), 127114 (2020)
Howe, M.S.: Aerodynamic noise of a serrated trailing edge. J. Fluids Struct. 5(1), 33–45 (1991)
Lyu, B., Ayton, L.J.: Rapid noise prediction models for serrated leading and trailing edges. J. Sound Vib. 469, 115136 (2020)
Oerlemans, S., Fisher, M., Maeder, T., Kögler, K.: Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations. AIAA J. 47(6), 1470–1481 (2009)
Sanjosé, M., Méon, C., Moreau, S., Idier, A., Laffay, P.: Direct numerical simulation of acoustic reduction using serrated trailing-edge on an isolated airfoil. In: 20th AIAA/CEAS Aeroacoustics Conference, p. 2324 (2014)
Ji, X., Wang, L., Ravi, S., Tian, F.-B., Young, J., Lai, J.C.: Influences of serrated trailing edge on the aerodynamic and aeroacoustic performance of a flapping wing during hovering flight. Phys. Fluids 34(1), 011902 (2022)
Eldredge, J.D., Jones, A.R.: Leading-edge vortices: mechanics and modeling. Annu. Rev. Fluid Mech. 51, 75–104 (2019)
Hightower, B.J., Wijnings, P.W., Scholte, R., Ingersoll, R., Chin, D.D., Nguyen, J., Shorr, D., Lentink, D.: How hummingbirds hum: oscillating aerodynamic forces explain timbre of the humming sound. arXiv preprint arXiv:2009.01933 (2020)
Wang, M., Moin, P.: Dynamic wall modeling for large-eddy simulation of complex turbulent flows. Phys. Fluids 14(7), 2043–2051 (2002)
Ma, M., Huang, W.-X., Xu, C.-X.: A dynamic wall model for large eddy simulation of turbulent flow over complex/moving boundaries based on the immersed boundary method. Phys. Fluids 31(11), 115101 (2019)
Ge, L., Sotiropoulos, F.: A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225(2), 1782–1809 (2007)
Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)
Kang, S., Sotiropoulos, F.: Numerical modeling of 3D turbulent free surface flow in natural waterways. Adv. Water Resour. 40, 23–36 (2012)
Calderer, A., Yang, X., Angelidis, D., Khosronejad, A., Le, T., Kang, S., Gilmanov, A., Ge, L., Borazjani, I.: Virtual flow simulator. Technical Report 004806MLTPL00, University of Minnesota (2015)
Huang, W.-X., Tian, F.-B.: Recent trends and progress in the immersed boundary method. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233(23–24), 7617–7636 (2019)
Huang, Q., Liu, Z., Wang, L., Ravi, S., Young, J., Lai, J.C.S., Tian, F.-B.: Streamline penetration, velocity error, and consequences of the feedback immersed boundary method. Phys. Fluids 34(9), 097101 (2022)
Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)
Armenio, V., Piomelli, U.: A Lagrangian mixed subgrid-scale model in generalized coordinates. Flow Turbul. Combust. 65(1), 51–81 (2000)
Park, G.I., Moin, P.: An improved dynamic non-equilibrium wall-model for large eddy simulation. Phys. Fluids 26(1), 37–48 (2014)
Moré, J.J., Cosnard, M.Y.: Numerical solution of nonlinear equations. ACM Trans. Math. Softw. (TOMS) 5(1), 64–85 (1979)
Ogunka, U.E., Akbarzadeh, A.M., Borazjani, I.: Mechanisms of morphing wall flow control by traveling waves over an airfoil. AIAA J. 61(4), 1687–1707 (2023)
Colonius, T., Lele, S.K.: Computational aeroacoustics: progress on nonlinear problems of sound generation. Prog. Aerosp. Sci. 40(6), 345–416 (2004)
Zhang, Y., Chen, H., Wang, K., Wang, M.: Aeroacoustic prediction of a multi-element airfoil using wall-modeled large-eddy simulation. AIAA J. 55(12), 4219–4233 (2017)
Avallone, F., Van Der Velden, W., Ragni, D., Casalino, D.: Noise reduction mechanisms of sawtooth and combed-sawtooth trailing-edge serrations. J. Fluid Mech. 848, 560–591 (2018)
Farassat, F.: Derivation of formulations 1 and 1A of Farassat. Technical Report NASA/TM-2007-214853, NASA Langley Research Center Hampton, VA, United States (2007)
Nedunchezian, K., Kang, C.-K., Aono, H.: Effects of flapping wing kinematics on the aeroacoustics of hovering flight. J. Sound Vib. 442, 366–383 (2019)
Lighthill, M.J.: On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 211(1107), 564–587 (1952)
Howe, M.S.: Theory of Vortex Sound. Cambridge University Press, New York (2003)
Kasibhotla, V.R., Tafti, D.: Large eddy simulation of the flow past pitching NACA0012 airfoil at 1E5 Reynolds number. In: Fluids Engineering Division Summer Meeting, vol. 46216, pp. 01–09011 (2014). American Society of Mechanical Engineers
Berton, E., Allain, C., Favier, D., Maresca, C.: Experimental methods for subsonic flow measurements. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 81, pp. 97–104 (2002)
Martinat, G., Braza, M., Hoarau, Y., Harran, G.: Turbulence modelling of the flow past a pitching NACA0012 airfoil at 1E5 and 1E6 Reynolds numbers. J. Fluids Struct. 24(8), 1294–1303 (2008)
Sandberg, R.D., Sandham, N.D.: Direct numerical simulation of turbulent flow past a trailing edge and the associated noise generation. J. Fluid Mech. 596, 353–385 (2008)
Kim, H.-J., Lee, S., Fujisawa, N.: Computation of unsteady flow and aerodynamic noise of NACA0018 airfoil using large-eddy simulation. Int. J. Heat Fluid Flow 27(2), 229–242 (2006)
Wu, H., Moreau, S., Sandberg, R.D.: On the noise generated by a controlled-diffusion aerofoil at \(Re_{c} = 1.5 \times 10^{5}\). J. Sound Vib. 487, 115620 (2020)
Zhou, T., Zhang, X., Zhong, S.: An experimental study of trailing edge noise from a heaving airfoil. J. Acoust. Soc. Am. 147(6), 4020–4031 (2020)
Manoha, E., Troff, B., Sagaut, P.: Trailing-edge noise prediction using large-eddy simulation and acoustic analogy. AIAA J. 38(4), 575–583 (2000)
Pater, L.L., Grubb, T.G., Delaney, D.K.: Recommendations for improved assessment of noise impacts on wildlife. J. Wildl. Manag. 73(5), 788–795 (2009)
Amiet, R.K.: Noise due to turbulent flow past a trailing edge. J. Sound Vib. 47(3), 387–393 (1976)
Van der Velden, W., Van Zuijlen, A., De Jong, A., Bijl, H.: On the estimation of spanwise pressure coherence of a turbulent boundary layer over a flat plate. In: Proceedings of WCCM XI: 11th World Congress on Computational Mechanics; ECCM, vol. 5, pp. 20–25 (2014)
Solomon Jr, O.M.: PSD computations using Welch’s method.[power spectral density (PSD)]. Technical report, Sandia National Labs., Albuquerque, NM (United States) (1991)
Avallone, F., Pröbsting, S., Ragni, D.: Three-dimensional flow field over a trailing-edge serration and implications on broadband noise. Phys. Fluids 28(11), 117101 (2016)
Chong, T.P., Vathylakis, A.: On the aeroacoustic and flow structures developed on a flat plate with a serrated sawtooth trailing edge. J. Sound Vib. 354, 65–90 (2015)