Aerobic bacteria associated with diabetic foot ulcers and their susceptibility pattern

Biomedical Dermatology - Tập 3 - Trang 1-6 - 2019
Ofonime M. Ogba1, Emmanuel Nsan1, Eyam S. Eyam2
1Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, University of Calabar, Calabar, Nigeria
2Department of Chemical Pathology, Faculty of Medicine, University of Calabar, Calabar, Nigeria

Tóm tắt

Foot ulcers in diabetes mellitus subjects cause morbidity and mortality and lead to non-traumatic amputations worldwide. Knowledge of the microbial burden in the ulcers may improve patients’ care and management. This prospective study was designed to isolate, identify and carry out antibiotic susceptibility testing on bacterial isolates associated with diabetic foot ulcers among subjects in University of Calabar Teaching Hospital. Subjects with diabetic foot ulcer were recruited after obtaining ethical clearance from the Research Committee and informed consent from the subjects. Samples were obtained from subjects using sterile swabs and subjected to microscopy and culture. Isolates were identified using standard bacteriological techniques. Kirby-Bauer method was used for susceptibility testing. Out of the 50 subjects recruited, 19 (38.1%) were males and 31 (62.0%) were females with mean age of 55.4 ± 10.1 and a minimum age of 40.0 years. All the subjects had grade 4 wounds. The study recorded 100% infection rates among subjects with 70.0% polymicrobial infections. A total of 97 isolates were obtained from the 50 subjects accounting for the average of 1.94 isolates per subject. The most prevalent isolate was Staphylococcus aureus (32 (32.9%)), while the least isolated pathogen was Klebsiella pneumonia (10 (20.4%)). Females harboured more isolates (61 (62.9%)) than males (36 (37.1%)), but infection rates were not significantly associated with gender (χ² = 15.0, p ≥ 0.05). Erythromycin was the most effective antibiotic agent (65.6%) against S. aureus while gram-negative bacteria were more susceptible to augmentin (87.5%) and ciprofloxacin (75.0%). The multiple antibiotic resistance of the bacterial isolates calls for the need to monitor resistance. The best practice is to perform antibiotic susceptibility testing before treatment. Wounds should be evaluated for bacterial agents before treatment is instituted. Information on the mi.uction of morbidity and amputation rates on the patients.

Tài liệu tham khảo

Almobarak AO, Awadalla H, Osman M, Ahmed MH. Prevalence of diabetic foot ulceration and associated risk factors: an old and still major public health problem in Khartoum, Sudan? Ann Transl Med. 2017;5(17):340. https://doi.org/10.21037/atm.2017.07.01. Altrichter LC, Legout L, Assal M, Rohner P, Hoffmeyer P, Bernard L. Severe Streptoccocus agalactiae infection of the diabetic foot. Presse Med. 2015;34:491–4. American Podiatric Medical Association. Diabetic Wound Care. www.apma.org/Learn/FootHealth.cfm?itemNumber=981. 2016. Anguzu JR, Olila D. Drug sensitivity patterns of bacterial isolates from septic post-operative wounds in a regional referral hospital in Uganda. Afr J Health Sci. 2007;7(3):148–54. Carvalho CB, Neto RM, Aragoa LP, Oliveira MM, Nogueira MB, Forti AC. Diabetic foot ulcer infection, bacteriological analysis of 141 patients. Arq Bras EndocrinolMetabol. 2014;48:398–405. Chin J. The bacteriology of diabetic foot ulcers with a special reference to multidrug resistant strains. J Clin Diagn Res. 2013;7(3):441–5. CLSI. Performance standards for antimicrobial susceptibility testing; 21st informational supplement. CLSI document M100–S21. Wayne: Clinical and Laboratory Standards Institute; 2011. Karmaker M, Sanyal SK, Sultana M, Hossain MA. Association of bacteria in diabetic andnon-diabetic foot infection—an investigation in patients from Bangladesh. J Infect Public Health. 2016;9:267–77. Krishman S, Nash F, Baker N, Fowler D, Rayman G. Reduction in diabetic amputations over 11 years in a defined UK population. Benefits of multidisciplinary team work and continuous prospective audit. Diabetes Care. 2008;31:99–101. Lipsky BA, Berewdt AR, Cornia PB, Pile JC, Peters EY, Armstrong DG, Deery HG, Embil JM, Joseph WS, Karchmer HW, Pinzur MS, Sennevilk E. Infectious Diseases Society of America: infectious Disease Society of America Clinical Practices guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2012;2012:e132–73. National Population Commission. National census, Cross River State, B.183. Lagos: NPC; 2006. Ogba OM, Olorode OA, Adie GA. Bacterial pathogens associated with wound infections in Calabar, Nigeria. J Med. 2014;13(1):26–33. Ogba OM, Udo NI, Inyang-Etoh PC, Olorode OA. Evaluation of the potency of commercial and locally prepared antibiotic discs on clinical bacterial isolates in Calabar, Nigeria. Int J Biomed Life Sci. 2017;2(1):1–7. Ogbera AO, Fasanmade O, Ohwovoriole AE. An assessment of the disease burden of foot ulcers in patients with diabetes mellitus attending a teaching hospital in Lagos, Nigeria. Int J Low Extrem Wounds. 2006;5:244–9. Pal B, Gupta SK. A study on the relation of the severity of diabetic foot ulcers with the type of bacterial flora isolated from the wounds. Int Surg J. 2016;3(1):189–94. https://doi.org/10.18203/2349-2902.isj20160224. Raja, N .S. Microbiology of diabetic foot infections in a teaching hospital in Malaysia: a retrospective study of 194 cases. J Microbiol Immunol Infect. 2007;40(1):39–44. Ramakant P, Verma A, Misra R, Prasad K. Changing microbiological profile of pathogenic bacteria in diabetic foot ulcer. Diabetologia. 2011;54(1):58–64. Richard JL, Lavigne JP, Sotto A. Diabetes and foot infection: more than double trouble. Diabetes Metab Res Rev. 2012;28:46–53. Scott G. The diabetic foot examination. A positive step in the prevention of diabetic foot ulcers and amputation. Osteopathic family physician. 2013;5(2):73–8. Shanmugam P, Jeya M, Linda S. Bacteriology of diabetic foot ulcers, with a special reference to multidrug resistant strains. J Clin Diagn Res. 2013;7(3):441–5. Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. JAMA. 2015;293:217–28. Spichler A, Bonnie LH, David GA, Benjamin A. Lipslay microbiology of diabetic foot infections. Crime Scene investigation. 2015;13:2. Viswanathan V, Jasmine J, Snehalatha C, Ramachandra A. Prevalence of pathogens in diabetic foot ulcers in South Indian type2 diabetic patients. J Assoc Physicians India. 2012;50:1013–6. Wright PR, Roye GK, Bodonaik N. The medical management of diabetes mellitus with particular reference to lower extremity: the Jamaican experience. West Indian Med J. 2011;50(1):46–9. Wu SC, Driver VR, Wrobel JS, Armstrong DG. Foot ulcers in the diabetic patient prevention and treatment. Vasc Health Risk Manag. 2007;3(1):65–76.