Adverse effects of MWCNTs on life parameters, antioxidant systems, and activation of MAPK signaling pathways in the copepod Paracyclopina nana

Aquatic Toxicology - Tập 179 - Trang 115-124 - 2016
Duck‐Hyun Kim1, Jayesh Puthumana1, Hye-Min Kang1, Min‐Chul Lee1, Chang‐Bum Jeong1, Jeonghoon Han1, Dae‐Sik Hwang1, Il‐Chan Kim2, Jin Wuk Lee1, Jae‐Seong Lee1
1Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
2Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adeleye, 2014, Long-term colloidal stability and metal leaching of single wall carbon nanotubes: effect of temperature and extracellular polymeric substances, Water Res., 49, 236, 10.1016/j.watres.2013.11.032

Bradford, 1976, A rapid and sensitive method for the quantitation of micro-gram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 7, 248, 10.1016/0003-2697(76)90527-3

Brozena, 2010, Outer wall selectively oxidized, water-soluble double-walled carbon nanotubes, J. Am. Chem. Soc., 132, 3932, 10.1021/ja910626u

Bubici, 2006, Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance, Oncogene, 25, 6731, 10.1038/sj.onc.1209936

Chen, 2011, In vitro evaluation of cytotoxicity and oxidative stress induced by multiwalled carbon nanotubes in murine RAW 264.7 macrophages and human A549 Lung cells, Biomed. Environ. Sci., 24, 593

Dahms, 2016, Potential of the cyclopoid copepod Paracyclopina nana as a model small test invertebrate for ecotoxicology, Aquat. Toxicol., 10.1016/j.aquatox.2016.10.013

De Volder, 2013, Carbon nanotubes: present and future commercial applications, Science, 339, 535, 10.1126/science.1222453

Dhillon, 2007, MAP kinase signaling pathways in cancer, Oncogene, 26, 3279, 10.1038/sj.onc.1210421

Donaldson, 2010, Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma, Part. Fibre Toxicol., 7, 5, 10.1186/1743-8977-7-5

Fenoglio, 2008, The oxidation of glutathione by cobalt/tungsten carbide contributes to hard metal-induced oxidative stress, Free Rad. Res., 42, 737, 10.1080/10715760802350904

Fenoglio, 2008, Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects, Chem. Res. Toxicol., 21, 1690, 10.1021/tx800100s

Finney, 1971, 333

Ghafari, 2008, Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa, Nat. Nanotechnol., 3, 347, 10.1038/nnano.2008.109

Guan, 2014, Spectroscopic investigations on the interaction between carbon nanotubes and catalase on molecular level, J. Biochem. Mol. Toxicol., 28, 211, 10.1002/jbt.21555

Habib, 2007, Glutathione protects cells against arsenite-induced toxicity, Free Rad. Biol. Med., 42, 191, 10.1016/j.freeradbiomed.2006.10.036

Han, 2015, Identification of the full 46 cytochrome P450 (CYP) complement and modulation of CYP expression in response to water accommodated fractions (WAFs) of crude oil in the cyclopoid copepod Paracyclopina nana, Environ. Sci. Technol., 49, 6982, 10.1021/acs.est.5b01244

Hwang, 2010, Molecular characterization and expression of vitellogenin (Vg) genes from the cyclopoid copepod, Paracyclopina nana exposed to heavy metals, Comp. Biochem. Physiol., 151C, 360

Jackson, 2013, Bioaccumulation and ecotoxicity of carbon nanotubes, Chem. Cent. J., 7, 154, 10.1186/1752-153X-7-154

Jiang, 2013, Modulation of apoptotic pathways of macrophages by surface-functionalized multi-walled carbon nanotubes, PLoS One, 8, e65756, 10.1371/journal.pone.0065756

Kang, 2008, Antibacterial effects of carbon nanotubes: size does matter, Langmuir, 24, 6409, 10.1021/la800951v

Karlsson, 2008, Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes, Chem. Res. Toxicol., 21, 1726, 10.1021/tx800064j

Kaur, 2006, Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes, Neurotoxicology, 27, 492, 10.1016/j.neuro.2006.01.010

Ki, 2009, The complete mitochondrial genome of the cyclopoid copepod Paracyclopina nana: A highly divergent genome with novel gene order and a typical gene numbers, Gene, 435, 13, 10.1016/j.gene.2009.01.005

Kim, 2009, Influence of multiwalled carbon nanotubes dispersed in natural organic matter on speciation and bioavailability of copper, Environ. Sci. Technol., 43, 8979, 10.1021/es900647f

Kim, 2010, Acute toxicity of a mixture of copper and single-walled carbon nanotubes to Daphnia magna, Environ. Toxicol. Chem., 29, 122, 10.1002/etc.8

Kim, 2011, Ultraviolet B retards growth, induces oxidative stress, and modulates DNA repair-related gene and heat shock protein gene expression in the monogonont rotifer, Brachionus sp, Aquat. Toxicol., 101, 529, 10.1016/j.aquatox.2010.12.005

Kostarelos, 2007, Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type, Nat. Nanotechnol., 2, 108, 10.1038/nnano.2006.209

Kwok, 2010, Chronic toxicity of double-walled carbon nanotubes to three marine organisms: influence of different dispersion methods, Nanomedicine, 5, 951, 10.2217/nnm.10.59

Lee, 2012, Multi-walled carbon nanotubes induce COX-2 and iNOS expression via MAP Kinase-dependent and −independent mechanisms in mouse RAW264.7 macrophages, Part. Fibre Toxicol., 9, 14, 10.1186/1743-8977-9-14

Lee, 2015, RNA-seq based whole transcriptome analysis of the cyclopoid copepod Paracyclopina nana focusing on xenobiotics metabolism, Comp. Biochem. Physiol., 15D, 12

Lee, 2015, Multiwall carbon nanotube-induced apoptosis and antioxidant gene expression in the gills, liver, and intestine of Oryzias latipes, Biomed. Res. Int.

Lee, 2015, Significance of adverse outcome pathways in biomarker-based environmental risk assessment in aquatic organisms, J. Environ. Sci., 35, 115, 10.1016/j.jes.2015.05.002

Lee, 2016, Effects of multi-walled carbon nanotube (MWCNT) on antioxidant depletion, the ERK signaling pathway, and copper bioavailability in the copepod (Tigriopus japonicus), Aquat. Toxicol., 171, 9, 10.1016/j.aquatox.2015.12.005

Lee, 2016, Multi-walled carbon nanotubes (MWCNTs) lead to growth retardation, antioxidant depletion, and activation of the ERK signaling pathway but decrease copper bioavailability in the monogonont rotifer (Brachionus koreanus), Aquat. Toxicol., 172, 67, 10.1016/j.aquatox.2015.12.022

Liu, 1998, Fullerene pipes, Science, 280, 1253, 10.1126/science.280.5367.1253

Liu, 2003, Genomic analysis of the rat lung following elemental mercury vapor exposure, Toxicol. Sci., 74, 174, 10.1093/toxsci/kfg091

Liu, 2009, Mobility of multiwalled carbon nanotubes in porous media, Environ. Sci. Technol., 43, 8153, 10.1021/es901340d

Long, 2001, Carbon nanotubes as superior sorbent for dioxin removal, J. Am. Chem. Soc., 123, 2057, 10.1021/ja003830l

Manke, 2013, Mechanisms of nanoparticle-induced oxidative stress and toxicity, Biomed. Res. Int., 10.1155/2013/942916

Monick, 2006, Active ERK contributes to protein translation by preventing JNK-dependent inhibition of protein phosphatase 1, J. Immunol., 177, 1636, 10.4049/jimmunol.177.3.1636

Mouchet, 2010, Carbon nanotube ecotoxicity in amphibians: assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes, Nanomedicine, 5, 963, 10.2217/nnm.10.60

Nymark, 2014, Free radical scavenging and formation by multi-walled carbon nanotubes in cell free conditions and in human bronchial epithelial cells, Part. Fibre Toxicol., 11, 4, 10.1186/1743-8977-11-4

Park, 2008, The effect of pretreatment methods on morphology and size distribution of multi-walled carbon nanotubes, Nanotechnology, 19, 33, 10.1088/0957-4484/19/33/335702

Pereira, 2014, Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris, J. Nanobiotechnol., 12, 15, 10.1186/1477-3155-12-15

Petersen, 2009, Biological uptake and depuration of carbon nanotubes by Daphnia magna, Environ. Sci. Technol., 43, 2969, 10.1021/es8029363

Porter, 2013, Acute pulmonary dose-responses to inhaled multi-walled carbon nanotubes, Nanotoxicology, 7, 1179, 10.3109/17435390.2012.719649

Rahman, 2005, Glutathione, stress responses, and redox signaling in lung inflammation, Antioxid. Redox Signal., 7, 42, 10.1089/ars.2005.7.42

Rahman, 2007, Studies on free radicals, antioxidants, and cofactors, Clin. Interv. Aging, 2, 219

Raisuddin, 2007, The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics, Aquat. Toxicol., 83, 161, 10.1016/j.aquatox.2007.04.005

Rastogi, 2008, Comparative study of carbon nanotube dispersion using surfactants, J. Colloid Interface Sci., 328, 421, 10.1016/j.jcis.2008.09.015

Ravichandran, 2009, Induction of apoptosis in rat lung epithelial cells by multiwalled carbon nanotubes, J. Biochem. Mol. Toxicol., 23, 333, 10.1002/jbt.20296

Ravichandran, 2011, Pulmonary biocompatibility assessment of inhaled single wall and multiwall carbon nanotubes in BALB/c Mice, J. Biol. Chem., 286, 29725, 10.1074/jbc.M111.251884

Reddy, 2011, Evaluation of oxidative stress and anti-oxidant status in rat serum following exposure of carbon nanotubes, Regul. Toxicol. Pharmacol., 59, 251, 10.1016/j.yrtph.2010.10.007

Regoli, 1997, Biochemical characterization of the antioxidant system in the scallop Adamussium colbecki, a sentinel organism for monitoring the Antarctic environment, Polar Biol., 17, 251, 10.1007/s003000050129

Roberts, 2007, In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna, Environ. Sci. Technol., 41, 3025, 10.1021/es062572a

Sabba, 2004, High-concentration dispersion of single-wall carbon nanotubes, Macromolecules, 37, 4815, 10.1021/ma049706u

Saleh, 2008, Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications, Environ. Sci. Technol., 42, 7963, 10.1021/es801251c

Schaeffer, 1999, Mitogen-activated protein kinases: specific messages from ubiquitous messengers, Mol. Cell. Biol., 19, 2435, 10.1128/MCB.19.4.2435

Scott-Fordsmand, 2008, The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms, Ecotoxicol. Environ. Saf., 71, 616, 10.1016/j.ecoenv.2008.04.011

Shen, 2003, Cross-talk between JNK/SAPK and ERK/MAPK pathways, J. Biol. Chem., 278, 26715, 10.1074/jbc.M303264200

Shvedova, 2003, Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells, J. Toxicol. Environ. Health A, 66, 1909, 10.1080/713853956

Skjolding, 2014, Uptake and depuration of gold nanoparticles in Daphnia magna, Ecotoxicology, 23, 1172, 10.1007/s10646-014-1259-x

Smith, 2007, Toxicity of single walled carbon nanotubes to rainbow trout (Oncorhynchus mykiss) Respiratory toxicity, organ pathologies, and other physiological effects, Aquat. Toxicol., 82, 94, 10.1016/j.aquatox.2007.02.003

Stegeman, 1994, Biochemistry and molecular biology of monooxygenase: current perspective on forms, functions, and regulation of cytochrome P450 in aquatic species, 87

Stone, 2012, Carbon nanotube-cellular interactions: macrophages, epithelial and mesothelial cells

Templetion, 2006, Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod, Environ. Sci. Technol., 40, 7387, 10.1021/es060407p

Vaisman, 2006, The role of surfactants in dispersion of carbon nanotubes, Adv. Colloid Interface Sci., 128/130, 37, 10.1016/j.cis.2006.11.007

Van Berlo, 2012, Carbon nanotubes: an insight into the mechanisms of their potential genotoxicity, Swiss Med. Wkly., 142, w13698

Wiesner, 2006, Assessing the risks of manufactured nanomaterials, Environ. Sci. Technol., 40, 4336, 10.1021/es062726m

Won, 2014, Gamma radiation induces growth retardation, impaired egg production, and oxidative stress in the marine copepod Paracyclopina nana, Aquat. Toxicol., 150, 17, 10.1016/j.aquatox.2014.02.010

Won, 2014, Effects of UV radiation on hatching, lipid peroxidation, and fatty acid composition in the copepod Paracyclopina nana, Comp. Biochem. Physiol., 165C, 60

Won, 2016, Adverse effects, expression of the Bk-CYP3045C1 gene, and activation of the ERK signaling pathway in the water accommodated fraction-exposed rotifer, Environ. Sci. Technol., 50, 6025, 10.1021/acs.est.6b01306

Xu, 2009, Multi-walled carbon nanotubes suppress potassium channel activities in PC12 cells, Nanotechnology, 20, 285120, 10.1088/0957-4484/20/28/285102

Zanella, 1996, Asbestos causes stimulation of the extracellular signal-regulated kinase 1 mitogen-activated protein kinase cascade after phosphorylation of the epidermal growth factor receptor, Cancer Res., 56, 5334

Zanella, 1999, Asbestos-induced phosphorylation of epidermal growth factor receptor is linked to c-fos and apoptosis, Am. J. Physiol., 277, L684

Zhang, 2012, Interactions of 14C-labeled multi-walled carbon nanotubes with soil minerals in water, Environ. Pollut., 166, 75, 10.1016/j.envpol.2012.03.008

Zhao, 2012, Size-dependent uptake of silver nanoparticles in Daphnia magna, Environ. Sci. Technol., 46, 11345, 10.1021/es3014375

Zhu, 2009, Acute toxicities of six manufactured nanometrial suspensions to Daphnia magna, J. Nanopart. Res., 11, 67, 10.1007/s11051-008-9426-8