Advection of passive magnetic field by the Gaussian velocity field with finite correlations in time and spatial parity violation

Pleiades Publishing Ltd - Tập 44 - Trang 360-373 - 2013
E. Jurčišinová1, M. Jurčišin1
1Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia

Tóm tắt

Using the field theoretic renormalization group technique the model of passively advected weak magnetic field by an incompressible isotropic helical turbulent flow is investigated up to the second order of the perturbation theory (two-loop approximation) in the framework of an extended Kazantsev-Kraichnan model of kinematic magnetohydrodynamics. Statistical fluctuations of the velocity field are taken in the form of a Gaussian distribution with zero mean and defined noise with finite correlations in time. The two-loop analysis of all possible scaling regimes is done and the influence of helicity on the stability of scaling regimes is discussed and shown in the plane of exponents ɛ − η, where ɛ characterizes the energy spectrum of the velocity field in the inertial range E ∞ k 1 − 2ε, and η is related to the correlation time at the wave number k which is scaled as k −2 + η. It is shown that in non-helical case the scaling regimes of the present vector model are completely identical and have also the same properties as those obtained in the corresponding model of passively advected scalar field. Besides, it is also shown that when the turbulent environment under consideration is helical then the properties of the scaling regimes in models of passively advected scalar and vector (magnetic) fields are essentially different. The results demonstrate the importance of the presence of a symmetry breaking in a given turbulent environment for investigation of the influence of an internal tensor structure of the advected field on the inertial range scaling properties of the model under consideration and will be used in the analysis of the influence of helicity on the anomalous scaling of correlation functions of passively advected magnetic field.

Tài liệu tham khảo

A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, MA, 1975), vol. 2. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995). K. R. Sreenivasan and R. A. Antonia, Ann. Rev. Fluid Mech. 29, 435 (1997). G. Falkovich, K. Gawedzki, and M. Vergassola, Rev. Mod. Phys. 73, 913 (2001). N. V. Antonov, J. Phys. A 39, 7825 (2006). R. H. Kraichnan, Phys. Fluids 11, 945 (1968). D. J. Amit, Field Theory, Renormalization Group, and Critical Phenomena (McGraw-Hill, 1978). J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon, Oxford, 1989). A. N. Vasil’ev, Quantum-Field Renormalization Group in the Theory of Critical Phenomena and Stochastic Dynamics (Chapman & Hall/CRC, Boca Raton, 2004). L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, Phys. Rev. E 58, 1823 (1998). L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S. Kabrits, and A. N. Vasil’ev, Phys. Rev. E 63, 025303(R) 2001; Phys. Rev. E 64, 056306 (2001). L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil’ev, The Field Theoretic Renormalization Group in Fully Developed Turbulence (Gordon & Breach, London, 1999). E. Jurčišinová, M. Jurčišin, R. Remecký, and M. Scholtz, Int. J. Mod. Phys. B 22, 3589 (2008). E. Jurčišinová and M. Jurčišin, Phys. Rev. E 77, 016306 (2008). O. G. Chkhetiani, M. Hnatich, E. Jurčišinová, M. Jurčišin, A. Mazzino, and M. Repašan, Czech. J. Phys. 56, 827 (2006); J. Phys. A: Math. Gen. 39, 7913 (2006); Phys. Rev. E 74, 036310 (2006). N. V. Antonov, A. Lanotte, and A. Mazzino, Phys. Rev. E 61, 6586 (2000). N. V. Antonov, J. Honkonen, A. Mazzino, and P. Muratore-Ginanneschi, Phys. Rev. E 62, R5891 (2000); L. Ts. Adzhemyan, N. V. Antonov, and A. V. Runov, Phys. Rev. E 64, 046310 (2001); M. Hnatich, J. Honkonen, M. Jurčišin, A. Mazzino, and S. Sprinc, Phys. Rev. E 71, 066312 (2005); M. Hnatich, M. Jurcisin, A. Mazzino, and S. Sprinc, Acta Phys. Slov. 52, 559 (2002); S. V. Novikov, J. Phys. A: Math. Gen. 39, 8133 (2006); E. Jurčišinová, M. Jurčišin, R. Remecky, and M. Scholtz, Phys. Part. Nucl. Lett. 5, 219 (2008). N. V. Antonov, M. Hnatich, J. Honkonen, and M. Jurčišin, Phys. Rev. E 68, 046306 (2003). L. Ts. Adzhemyan, N. V. Antonov, J. Honkonen, and T. L. Kim, Phys. Rev. E 71, 016303 (2005). E. Jurčišinová, M. Jurčišin, and R. Remecký, Springer Proceedings in Physics 132, 961 (2009). N. V. Antonov and N. M. Gulitskiy, Lecture Notes in Comp. Science 2012, vol. 7125/2012, p. 128. N. V. Antonov. Phys. Rev. E 60, 6691 (1999). M. Holzer and E. D. Siggia, Phys. Fluids 6, 1820 (1994). M. Avellaneda and A. Majda, Commun. Math. Phys. 131, 381 (1990); Commun. Math. Phys. 146, 139 (1992); A. Majda, J. Stat. Phys. 73, 515 (1993); D. Horntrop and A. Majda, J. Math. Sci. Univ. Tokyo 1, 23 (1994). Q. Zhang and J. Glimm, Commun. Math. Phys. 146, 217 (1992). M. Chertkov, G. Falkovich, and V. Lebedev, Phys. Rev. Lett. 76, 3707 (1996). G. Eyink, Phys. Rev. E 54, 1497 (1996). R. H. Kraichnan, Phys. Fluids 7, 1723 (1964); Phys. Fluids 8, 575 (1965); S. Chen and R. H. Kraichnan, Phys. Fluids A 1, 2019 (1989); V. S. L’vov, Phys. Rep. 207, 1 (1991). N. V. Antonov, Physica D 144, 370 (2000); Zap. Nauchn. Semin. POMI 269, 79 (2000). L. Ts. Adzhemyan, N. V. Antonov, and J. Honkonen, Phys. Rev. E 66, 036313 (2002). J. P. Bouchaud, A. Comtet, A. Georges, and P. Le Doussal, J. Phys. (Paris) 48, 1445 (1987); J. Phys. (Paris) 49, 369 (1988); J. P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990). J. Honkonen and E. Karjalainen, J. Phys. A 21, 4217 (1988); J. Honkonen, Yu. M. Pis’mak, A. N. Vasil’ev, J. Phys. A 21, L835 (1989); J. Honkonen and Yu. M. Pis’mak, J. Phys. A 22, L899 (1989). M. Hnatich, M. Jurčišin, and M. Stehlik, Magnetohydrodynamics 37, 80 (2001).