Advancing ionomer design to boost interfacial and thin-film proton conductivity via styrene-calix[4]arene-based ionomers

Cell Reports Physical Science - Tập 4 - Trang 101282 - 2023
Shyambo Chatterjee1, Oghenetega Allen Obewhere1, Ehsan Zamani2, Rajesh Keloth1, Seefat Farzin1, Martha D. Morton3, Anandakumar Sarella4, Shudipto Konika Dishari1
1Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
2Department of Chemical and Biomolecular Engineering, University of Nebraska – Lincoln, Lincoln, NE 68588, USA
3Department of Chemistry and Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
4Nebraska Center for Materials and Nanoscience, Voelte-Keegan Nanoscience Research Center, University of Nebraska-Lincoln, Lincoln, NE 68588-0298, USA

Tài liệu tham khảo

Cullen, 2021, New roads and challenges for fuel cells in heavy-duty transportation, Nat. Energy, 6, 462, 10.1038/s41560-021-00775-z Kongkanand, 2016, The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells, J. Phys. Chem. Lett., 7, 1127, 10.1021/acs.jpclett.6b00216 Jiao, 2021, Designing the next generation of proton-exchange membrane fuel cells, Nature, 595, 361, 10.1038/s41586-021-03482-7 Asano, 2006, Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications, J. Am. Chem. Soc., 128, 1762, 10.1021/ja0571491 Adamski, 2021, On the evolution of sulfonated polyphenylenes as proton exchange membranes for fuel cells, Mater. Adv., 2, 4966, 10.1039/D1MA00511A Chang, 2015, Effect of superacidic side chain structures on high conductivity aromatic polymer fuel cell membranes, Macromolecules, 48, 7117, 10.1021/acs.macromol.5b01739 Elabd, 2011, Block copolymers for fuel cells, Macromolecules, 44, 1, 10.1021/ma101247c Yandrasits, 2017, Increasing fuel cell efficiency by using ultra-low equivalent weight ionomers, Electrochem. Soc. Interface, 26, 49, 10.1149/2.F05171if Hickner, 2005, The chemical and structural nature of proton exchange membrane fuel cell properties, Fuel Cell., 5, 213, 10.1002/fuce.200400064 Hickner, 2004, Alternative polymer systems for proton exchange membranes (PEMs), Chem. Rev., 104, 4587, 10.1021/cr020711a Stamenkovic, 2007, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability, Science, 315, 493, 10.1126/science.1135941 Li, 2016, Progress in the development of oxygen reduction reaction catalysts for low-temperature fuel cells, Annu. Rev. Chem. Biomol. Eng., 7, 509, 10.1146/annurev-chembioeng-080615-034526 Wu, 2011, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science, 332, 443, 10.1126/science.1200832 Wang, 2021, Cathode design for proton exchange membrane fuel cells in automotive applications, Automot. Innov., 4, 144, 10.1007/s42154-021-00148-y Avid, 2020, Ionic liquid modified Pt/C electrocatalysts for the oxygen reduction reaction in polymer electrolyte fuel cells, Meet. Abstr., MA2020-02, 2155, 10.1149/MA2020-02332155mtgabs Li, 2020, Modifying the electrocatalyst − ionomer interface via sulfonated poly(ionic liquid) block copolymers to enable high- performance polymer electrolyte fuel cells, ACS Energy Lett., 5, 1726, 10.1021/acsenergylett.0c00532 Liu, 2021, Operando X-ray absorption spectroscopic study on the effect of ionic liquid coverage upon the oxygen reduction reaction activity of Pd-core Pt-shell catalysts, Electrochemistry, 89, 31, 10.5796/electrochemistry.20-00122 Zhang, 2021, Emerging applications of solid catalysts with ionic liquid layer concept in electrocatalysis, Adv. Funct. Mater., 31, 2010977, 10.1002/adfm.202010977 Islam, 2022, Designing fuel cell catalyst support for superior catalytic activity and low mass-transport resistance, Nat. Commun., 13, 6157, 10.1038/s41467-022-33892-8 Doo, 2020, Nano-scale control of the ionomer distribution by molecular masking of the Pt surface in PEMFCs, J. Mater. Chem., 8, 13004, 10.1039/C9TA14002F Pramounmat, 2019, Controlling the distribution of perfluorinated sulfonic acid ionomer with elastin-like polypeptide, ACS Appl. Mater. Interfaces, 11, 43649, 10.1021/acsami.9b11160 Zhou, 2012, Ligand-mediated electrocatalytic activity of Pt nanoparticles for oxygen reduction reactions, J. Phys. Chem. C, 116, 10592, 10.1021/jp300199x Chatterjee, 2022, Molecular-Level control over ionic conduction and ionic current direction by designing macrocycle-based ionomers, JACS Au, 2, 1144, 10.1021/jacsau.2c00143 Farzin, 2020, Ionomers from kraft lignin for renewable energy applications, Front. Chem., 8, 690, 10.3389/fchem.2020.00690 Nagao, 2017, Proton-conductivity enhancement in polymer thin films, Langmuir, 33, 12547, 10.1021/acs.langmuir.7b01484 Lim, 2022, Protonated phosphonic acid electrodes for high power heavy-duty vehicle fuel cells, Nat. Energy, 7, 248, 10.1038/s41560-021-00971-x Venugopalan, 2021, Correlating high temperature thin film ionomer electrode binder properties to hydrogen pump polarization, Mater. Adv., 2, 4228, 10.1039/D1MA00208B Shrivastava, 2018, Interfacial and bulk water in ultrathin films of nafion, 3M PFSA , and 3M PFIA ionomers on a polycrystalline platinum surface, Macromolecules, 51, 9839, 10.1021/acs.macromol.8b01240 Farzin, 2021, Unraveling depth-specific ionic conduction and stiffness behavior across ionomer thin films and bulk membranes, ACS Macro Lett., 10, 791, 10.1021/acsmacrolett.1c00110 Kusoglu, 2017, New insights into perfluorinated sulfonic-acid ionomers, Chem. Rev., 117, 987, 10.1021/acs.chemrev.6b00159 Karan, 2019, Interesting facets of surface, interfacial, and bulk characteristics of perfluorinated ionomer films, Langmuir, 35, 13489, 10.1021/acs.langmuir.8b03721 Holdcroft, 2014, Fuel cell catalyst layers: a polymer science perspective, Chem. Mater., 26, 381, 10.1021/cm401445h Modestino, 2013, Self-assembly and transport limitations in confined nafion films, Macromolecules, 46, 867, 10.1021/ma301999a Dishari, 2014, Current understanding of proton conduction in confined ionomeric systems, Postdoc J., 2, 30 Paul, 2014, Proton transport property in supported nafion nanothin films by electrochemical impedance spectroscopy, J. Electrochem. Soc., 161, F1395, 10.1149/2.0571414jes Farzin, 2019, Fluorocarbon-based ionomers with single acid and multiacid side chains at nanothin interfaces, J. Phys. Chem. C, 123, 30871, 10.1021/acs.jpcc.9b10015 Kusoglu, 2014, Impact of substrate and processing on confinement of nafion thin films, Adv. Funct. Mater., 24, 4763, 10.1002/adfm.201304311 Kushner, 2019, Substrate-dependent molecular and nanostructural orientation of nafion thin films, Adv. Funct. Mater., 29, 1902699, 10.1002/adfm.201902699 Dishari, 2013, Confinement and proton transfer in Nafion thin films, Macromolecules, 46, 413, 10.1021/ma3011137 Dishari, 2012, Antiplasticization and water uptake of Nafion® thin films, ACS Macro Lett., 1, 291, 10.1021/mz200169a Dura, 2009, Multilamellar interface structures in Nafion, Macromolecules, 42, 4769, 10.1021/ma802823j DeCaluwe, 2018, Structure-property relationships at Nafion thin-film interfaces: thickness effects on hydration and anisotropic ion transport, Nano Energy, 46, 91, 10.1016/j.nanoen.2018.01.008 Eastman, 2012, Effect of confinement on structure, water solubility, and water transport in Nafion thin Films, Macromolecules, 45, 7920, 10.1021/ma301289v Komini Babu, 2016, Resolving electrode morphology’s impact on platinum group metal-free cathode performance using nano-CT of 3D hierarchical pore and ionomer distribution, ACS Appl. Mater. Interfaces, 8, 32764, 10.1021/acsami.6b08844 Peron, 2011, Hydrocarbon proton conducting polymers for fuel cell catalyst layers, Energy Environ. Sci., 4, 1575, 10.1039/c0ee00638f Dishari, 2018, Unraveling the complex hydration behavior of ionomers under thin film confinement, J. Phys. Chem. C, 122, 3471, 10.1021/acs.jpcc.7b11888 Luo, 2021, Anion exchange ionomers: impact of chemistry on thin-film properties, Adv. Funct. Mater., 31, 2008778, 10.1002/adfm.202008778 Hsu, 1983, Ion transport and clustering in nafion perfluorinated membranes, J. Membr. Sci., 13, 307, 10.1016/S0376-7388(00)81563-X De Almeida, 2015, 1H solid-state NMR study of nanothin Nafion films, J. Phys. Chem. C, 119, 1280, 10.1021/jp5086747 Poojary, 2020, Transport and electrochemical interface properties of ionomers in low-pt loading catalyst layers: effect of ionomer equivalent weight and relative humidity, Molecules, 25, 3387, 10.3390/molecules25153387 Kodama, 2018, Effect of the side-chain structure of perfluoro-sulfonic acid ionomers on the oxygen reduction reaction on the surface of Pt, ACS Catal., 8, 694, 10.1021/acscatal.7b03571 Astill, 2009, Factors influencing electrochemical properties and performance of hydrocarbon-based electrolyte PEMFC catalyst layers, J. Electrochem. Soc., 156, B499, 10.1149/1.3082119 Budd, 2006, Polymers of intrinsic microporosity (PIMs): high free volume polymers for membrane applications, Macromol. Symp., 245–246, 403, 10.1002/masy.200651356 Ye, 2020, Metal–organic frameworks as a versatile platform for proton conductors, Adv. Mater., 32, 1907090, 10.1002/adma.201907090 Geng, 2020, Covalent organic frameworks: design, synthesis, and functions, Chem. Rev., 120, 8814, 10.1021/acs.chemrev.9b00550 Zhang, 2022, Covalent organic framework-based porous ionomers for high-performance fuel cells, Science, 378, 181, 10.1126/science.abm6304 Shang, 2021, Electrospun composite proton-exchange and anion-exchange membranes for fuel cells, Energies, 14, 6709, 10.3390/en14206709 Akeson, 1991, Proton conductance by the gramicidin water wire. Model for proton conductance in the F1F0 ATPases?, Biophys. J., 60, 101, 10.1016/S0006-3495(91)82034-3 Baaden, 2018, Structure and function of natural proteins for water transport: general discussion, Faraday Discuss, 209, 83, 10.1039/C8FD90019A Pfeffermann, 2021, The energetic barrier to single-file water flow through narrow channels, Biophys. Rev., 13, 913, 10.1007/s12551-021-00875-w Epsztein, 2020, Towards single-species selectivity of membranes with subnanometre pores, Nat. Nanotechnol., 15, 426, 10.1038/s41565-020-0713-6 Wang, 2022, Tunable ion transport through ultimately small channels, Advanced Membranes, 2, 100043, 10.1016/j.advmem.2022.100043 Song, 2019, Artificial water channels: toward and beyond desalination, Curr. Opin. Chem. Eng., 25, 9, 10.1016/j.coche.2019.06.007 Barboiu, 2012, Artificial water channels, Angew. Chem., Int. Ed. Engl., 51, 11674, 10.1002/anie.201205819 Köfinger, 2011, Single-file water in nanopores, Phys. Chem. Chem. Phys., 13, 15403, 10.1039/c1cp21086f Köfinger, 2008, Macroscopically ordered water in nanopores, Proc. Natl. Acad. Sci. USA, 105, 13218, 10.1073/pnas.0801448105 Mann, 2003, Water alignment and proton conduction inside carbon nanotubes, Phys. Rev. Lett., 90, 10.1103/PhysRevLett.90.195503 Majumder, 2005, Enhanced flow in carbon nanotubes, Nature, 438, 44, 10.1038/438044a Markowitz, 1989, Perforated monolayers: design and synthesis of porous and cohesive monolayers from mercurated calix[n]arenes, J. Am. Chem. Soc., 111, 8192, 10.1021/ja00203a020 Yu, 2019, Host–guest chemistry in supramolecular theranostics, Theranostics, 9, 3041, 10.7150/thno.31653 Jie, 2015, Macrocyclic amphiphiles, Chem. Soc. Rev., 44, 3568, 10.1039/C4CS00390J Addonizio, 2021, Supramolecular “click chemistry” for targeting in the body, Bioconjug. Chem., 32, 1935, 10.1021/acs.bioconjchem.1c00326 Zhang, 2017, Ultrathin and ion-selective janus membranes for high-performance Osmotic energy conversion, J. Am. Chem. Soc., 139, 8905, 10.1021/jacs.7b02794 Liang, 2020, Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation, Nat. Commun., 11, 2015, 10.1038/s41467-020-15771-2 Elimelech, 2011, The future of seawater and the environment, Science, 333, 712, 10.1126/science.1200488 Faucher, 2019, Critical knowledge Gaps in mass transport through single-digit nanopores: a review and perspective, J. Phys. Chem. C, 123, 21309, 10.1021/acs.jpcc.9b02178 Choi, 2013, Diameter-dependent ion transport through the interior of isolated single-walled carbon nanotubes, Nat. Commun., 4, 2397, 10.1038/ncomms3397 Licsandru, 2016, Salt-excluding artificial water channels exhibiting enhanced dipolar water and proton translocation, J. Am. Chem. Soc., 138, 5403, 10.1021/jacs.6b01811 Barboiu, 2014, An artificial primitive mimic of the Gramicidin-A channel, Nat. Commun., 5, 4142, 10.1038/ncomms5142 Zhou, 2012, Self-assembling subnanometer pores with unusual mass-transport properties, Nat. Commun., 3, 949, 10.1038/ncomms1949 Zhao, 2014, Proton gradient-induced water transport mediated by water wires inside narrow aquapores of aquafoldamer molecules, J. Am. Chem. Soc., 136, 14270, 10.1021/ja5077537 Shen, 2015, Highly permeable artificial water channels that can self-assemble into two-dimensional arrays, Proc. Natl. Acad. Sci. USA, 112, 9810, 10.1073/pnas.1508575112 Hu, 2012, Single-molecular artificial transmembrane water channels, J. Am. Chem. Soc., 134, 8384, 10.1021/ja302292c Si, 2011, Selective artificial transmembrane channels for protons by formation of water wires, Angew. Chem., Int. Ed. Engl., 50, 12564, 10.1002/anie.201106857 Li, 2020, Sulfonated sub-1-nm metal-organic framework channels with ultrahigh proton selectivity, J. Am. Chem. Soc., 142, 9827 Porter, 2020, Pathways and challenges for biomimetic desalination membranes with sub-nanometer channels, ACS Nano, 14, 10894, 10.1021/acsnano.0c05753 Chaturvedi, 2022, Deconstructing proton transport through atomically thin monolayer CVD graphene membranes, J. Mater. Chem., 10, 19797, 10.1039/D2TA01737G Ruiz, 2015, Tailoring the water structure and transport in nanotubes with tunable interiors, Nanoscale, 7, 121, 10.1039/C4NR05407E Tunuguntla, 2016, Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins, Nat. Nanotechnol., 11, 639, 10.1038/nnano.2016.43 Tunuguntla, 2017, Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins, Science, 359, 792, 10.1126/science.aan2438 Dellago, 2003, Proton transport through water-filled carbon nanotubes, Phys. Rev. Lett., 90, 105902, 10.1103/PhysRevLett.90.105902 Cao, 2010, Mechanism of fast proton transport along one-dimensional water chains confined in carbon nanotubes, J. Am. Chem. Soc., 132, 11395, 10.1021/ja1046704 Andrei, 2022, Biomimetic artificial proton channels, Biomolecules, 12, 1473, 10.3390/biom12101473 Zhang, 2022, Angstrom-scale ion channels towards single-ion selectivity, Chem. Soc. Rev., 51, 2224, 10.1039/D1CS00582K Si, 2015, Tubular unimolecular transmembrane channels: construction strategy and transport activities, Acc. Chem. Res., 48, 1612, 10.1021/acs.accounts.5b00143 Eisenberg, 2003, Why can’t protons move through water channels?, Biophys. J., 85, 3427, 10.1016/S0006-3495(03)74763-8 Strilets, 2020, Biomimetic approach for highly selective artificial water channels based on tubular pillar[5]arene dimers, Angew. Chem., Int. Ed. Engl., 132, 23413, 10.1002/ange.202009219 Yan, 2020, Artificial aquaporin that restores wound healing of impaired cells, J. Am. Chem. Soc., 142, 15638, 10.1021/jacs.0c00601 Yang, 2005, Effect of 4-sulphonato-calix[n]arenes and cyclodextrins on the solubilization of niclosamide, a poorly water soluble anthelmintic, AAPS J., 7, E241, 10.1208/aapsj070123 Eddaif, 2019, Sensitive detection of heavy metals ions based on the calixarene derivatives-modified piezoelectric resonators: a review, Int. J. Environ. Anal. Chem., 99, 824, 10.1080/03067319.2019.1616708 Ming, 2011, 8845 Golubenko, 2021, Ion exchange membranes based on radiation-induced grafted functionalized polystyrene for high-performance reverse electrodialysis, J. Power Sources, 511, 230460, 10.1016/j.jpowsour.2021.230460 Chang, 2011, Aromatic ionomers with highly acidic sulfonate groups: acidity, hydration, and proton conductivity, Macromolecules, 44, 8458, 10.1021/ma201759z Ahmad, 2022, An overview of proton exchange membranes for fuel cells: materials and manufacturing, Int. J. Hydrogen Energy, 47, 19086, 10.1016/j.ijhydene.2022.04.099 Cousins, 2019, The concept of essential use for determining when uses of PFASs can be phased out, Environ. Sci. Process. Impacts, 21, 1803, 10.1039/C9EM00163H Di Vona, 2010, High ionic exchange capacity polyphenylsulfone (SPPSU) and polyethersulfone (SPES) cross-linked by annealing treatment: thermal stability, hydration level and mechanical properties, J. Membr. Sci., 354, 134, 10.1016/j.memsci.2010.02.058 Furer, 2019, Investigation of hydrogen bonding in p-sulfonatocalix [4] arene and its thermal stability by vibrational spectroscopy, J. Mol. Struct., 1195, 403, 10.1016/j.molstruc.2019.06.008 DSC Measurements of Polystyrene-The Effects of Molecular Weight on Glass Transition (1995). https://www.hitachi-hightech.com/file/global/pdf/products/science/appli/ana/thermal/application_TA_068e.pdf. Rieger, 1996, The glass transition temperature of polystyrene. Results of a round robin test, J. Therm. Anal., 46, 965, 10.1007/BF01983614 Kushner, 2016, Side chain influence on the mechanical properties and water uptake of confined comb-shaped cationic polymer thin films, Macromol. Chem. Phys., 217, 2442, 10.1002/macp.201600254 Zawodzinski, 1993, A comparative study of water uptake by and transport through ionomeric fuel cell membranes, J. Electrochem. Soc., 140, 1981, 10.1149/1.2220749 Holz, 2000, Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements, Phys. Chem. Chem. Phys., 2, 4740, 10.1039/b005319h English, 2003, Hydrogen bonding and molecular mobility in liquid water in external electromagnetic fields, J. Chem. Phys., 119, 11806, 10.1063/1.1624363 Horner, 2015, The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues, Sci. Adv., 1, e1400083, 10.1126/sciadv.1400083 Song, 2020, Artificial water channels enable fast and selective water permeation through water-wire networks, Nat. Nanotechnol., 15, 73, 10.1038/s41565-019-0586-8 Ye, 2006, Solid-state NMR study of two classic proton conducting polymers: nafion and sulfonated poly (ether ether ketone)s, Macromolecules, 39, 3283, 10.1021/ma0523825 Murata, 2000, Structural determinants of water permeation through aquaporin-1, Nature, 407, 599, 10.1038/35036519 Reimer, 2016, Water distribution in high temperature polymer electrolyte fuel cells, Int. J. Hydrogen Energy, 41, 1837, 10.1016/j.ijhydene.2015.11.106 Nandi, 2016, Role of hydration layer in dynamical transition in proteins: insights from translational self-diffusivity, J. Phys. Chem. B, 120, 12031, 10.1021/acs.jpcb.6b06683 Kobayashi, 2021, Effect of Pt and ionomer distribution on polymer electrolyte fuel cell performance and durability, ACS Appl. Energy Mater., 4, 2307, 10.1021/acsaem.0c02841 Sambandam, 2010, Influence of binder properties on kinetic and transport processes in polymer electrolyte fuel cell electrodes, Phys. Chem. Chem. Phys., 12, 6140, 10.1039/b921916a Maurya, 2018, Surface adsorption affects the performance of alkaline anion-exchange membrane fuel cells, ACS Catal., 8, 9429, 10.1021/acscatal.8b03227 Wang, 2021, Macromolecular design for oxygen/nitrogen permselective membranes-top-performing polymers in 2020-, Polymers, 13, 3012, 10.3390/polym13173012