Advancing Lithium Metal Batteries
Tóm tắt
Từ khóa
Tài liệu tham khảo
Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359, 10.1038/35104644
Choi, 2016, Promise and reality of post-lithium-ion batteries with high energy densities, Nat. Rev. Mater., 1, 16013, 10.1038/natrevmats.2016.13
Liu, 2016, Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries, Nano Today, 11, 82, 10.1016/j.nantod.2016.02.003
Xu, 2014, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7, 513, 10.1039/C3EE40795K
Lin, 2017, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12, 194, 10.1038/nnano.2017.16
Lu, 2014, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nat. Mater., 13, 961, 10.1038/nmat4041
Zhang, 2016, Lithium Metal Anodes and Rechargeable Lithium Metal Batteries, Springer Series in Materials Science, 249, 10.1007/978-3-319-22861-7
Cao, 2015, Anodes for rechargeable lithium-sulfur batteries, Adv. Energy Mater., 5, 1402273, 10.1002/aenm.201402273
Li, 2018, A flexible solid electrolyte interphase layer for long-life lithium metal anodes, Angew. Chem. Int. Ed., 57, 1505, 10.1002/anie.201710806
Wang, 2017, Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels, Adv. Mater., 29, 1703729, 10.1002/adma.201703729
Cheng, 2017, Toward safe lithium metal anode in rechargeable batteries: a review, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115
Zheng, 2017, Electrolyte additive enabled fast charging and stable cycling lithium metal batteries, Nat. Energy, 2, 17012, 10.1038/nenergy.2017.12
Xiang, 2016, Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato) borate dual-salt electrolytes, J. Power Sources, 318, 170, 10.1016/j.jpowsour.2016.04.017
Qian, 2015, High rate and stable cycling of lithium metal anode, Nat. Commun., 6, 6362, 10.1038/ncomms7362
Qian, 2015, Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive, Nano Energy, 15, 135, 10.1016/j.nanoen.2015.04.009
Bouchet, 2013, Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries, Nat. Mater., 12, 452, 10.1038/nmat3602
Suo, 2013, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries, Nat. Commun., 4, 1481, 10.1038/ncomms2513
Yamada, 2014, Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries, J. Am. Chem. Soc., 136, 5039, 10.1021/ja412807w
Yamada, 2015, Review−superconcentrated electrolytes for lithium batteries, J. Electrochem. Soc., 162, A2406, 10.1149/2.0041514jes
Yoon, 2013, Fast charge/discharge of Li metal batteries using an ionic liquid electrolyte, J. Electrochem. Soc., 160, A1629, 10.1149/2.022310jes
Togasaki, 2016, Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium−oxygen battery, J. Power Sources, 307, 98, 10.1016/j.jpowsour.2015.12.123
Zheng, 2017, Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications, Adv. Sci. (Weinh.), 4, 1700032
Ding, 2013, Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode, J. Electrochem. Soc., 160, A1894, 10.1149/2.100310jes
Ding, 2013, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc., 135, 4450, 10.1021/ja312241y
Zhang, 2014, Dendrite-free lithium deposition with self-aligned nanorod structure, Nano Lett., 14, 6889, 10.1021/nl5039117
Ren, 2018, Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives, ACS Energy Lett., 3, 14, 10.1021/acsenergylett.7b00982
Zhang, 2017, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries, Adv. Funct. Mater., 27, 1605989, 10.1002/adfm.201605989
Markevich, 2017, Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution, ACS Energy Lett., 2, 1321, 10.1021/acsenergylett.7b00300
Jeong, 2008, Suppression of dendritic lithium formation by using concentrated electrolyte solutions, Electrochem. Commun., 10, 635, 10.1016/j.elecom.2008.02.006
Liu, 2016, Enhanced cycling stability of rechargeable Li−O2 batteries using high-concentration electrolytes, Adv. Funct. Mater., 26, 605, 10.1002/adfm.201503697
Liu, 2017, Stabilization of Li metal anode in DMSO-based electrolytes via optimization of salt−solvent coordination for Li-O2 batteries, Adv. Energy Mater., 7, 1602605, 10.1002/aenm.201602605
Jiao, 2018, Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries, Joule, 2, 110, 10.1016/j.joule.2017.10.007
Qian, 2016, Anode-free rechargeable lithium metal batteries, Adv. Funct. Mater., 26, 7094, 10.1002/adfm.201602353
Fergus, 2010, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources, 195, 4554, 10.1016/j.jpowsour.2010.01.076
Hallinan, 2013, Polymer electrolytes, Annu. Rev. Mater. Res., 43, 503, 10.1146/annurev-matsci-071312-121705
Sun, 2015, Realization of high performance polycarbonate-based Li polymer batteries, Electrochem. Commun., 52, 71, 10.1016/j.elecom.2015.01.020
Manthiram, 2017, Lithium battery chemistries enabled by solid state electrolytes, Nat. Rev. Mater., 2, 16103, 10.1038/natrevmats.2016.103
Dudney, 1992, Sputtering of lithium compounds for preparation of electrolyte thin films, Solid State Ionics, 53–56, 655, 10.1016/0167-2738(92)90443-S
Ohta, 2013, All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing, J. Power Sources, 238, 53, 10.1016/j.jpowsour.2013.02.073
Kotobuki, 2010, Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode, J. Electrochem. Soc., 157, A1076, 10.1149/1.3474232
Sudo, 2014, Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal, Solid State Ionics, 262, 151, 10.1016/j.ssi.2013.09.024
Cheng, 2014, The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes, Phys. Chem. Chem. Phys., 16, 18294, 10.1039/C4CP02921F
Han, 2017, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nat. Mater., 16, 572, 10.1038/nmat4821
Luo, 2017, Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer, Adv. Mater., 29, 10.1002/adma.201606042
Fu, 2016, Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries, Proc. Natl. Acad. Sci. USA, 113, 7094, 10.1073/pnas.1600422113
Duan, 2018, Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers, J. Am. Chem. Soc., 140, 82, 10.1021/jacs.7b10864
Zeng, 2018, Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries, Chem, 4, 298, 10.1016/j.chempr.2017.12.003
Li, 2016, Mastering the interface for advanced all-solid-state lithium rechargeable batteries, Proc. Natl. Acad. Sci. USA, 113, 13313, 10.1073/pnas.1615912113
Kozen, 2017, Stabilization of lithium metal anodes by hybrid artificial solid electrolyte interphase, Chem. Mater., 29, 6298, 10.1021/acs.chemmater.7b01496
Zheng, 2014, Interconnected hollow carbon nanospheres for stable lithium metal anodes, Nat. Nanotechnol., 9, 618, 10.1038/nnano.2014.152
Liu, 2017, Making Li-metal electrodes rechargeable by controlling the dendrite growth direction, Nat. Energy, 2, 17083, 10.1038/nenergy.2017.83
Tu, 2017, Nanoporous hybrid electrolytes for high-energy batteries based on reactive metal anodes, Adv. Energy Mater., 7, 1602367, 10.1002/aenm.201602367
Li, 2016, An artificial solid electrolyte interphase layer for stable lithium metal anodes, Adv. Mater., 28, 1853, 10.1002/adma.201504526
Lee, 2016, Sustainable redox mediation for lithium–oxygen batteries by a composite protective layer on the lithium-metal anode, Adv. Mater., 28, 857, 10.1002/adma.201503169
Zhang, 2015, An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries, J. Power Sources, 277, 304, 10.1016/j.jpowsour.2014.12.023
Pang, 2017, An in vivo formed solid electrolyte surface layer enabled stable plating of Li metal, Joule, 1, 871, 10.1016/j.joule.2017.11.009
Cheng, 2017, Implantable solid electrolyte interphase in lithium-metal batteries, Chem, 2, 258, 10.1016/j.chempr.2017.01.003
Peng, 2017, Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains, Nano Energy, 39, 662, 10.1016/j.nanoen.2017.07.052
Kozen, 2015, Next-generation lithium metal anode engineering via atomic layer deposition, ACS Nano, 9, 5884, 10.1021/acsnano.5b02166
Ye, 2017, Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons, J. Am. Chem. Soc., 139, 5916, 10.1021/jacs.7b01763
Lee, 2017, Suppressing lithium dendrite growth by metallic coating on a separator, Adv. Funct. Mater., 27, 1704391, 10.1002/adfm.201704391
Lu, 2014, Ionic-liquid–nanoparticle hybrid electrolytes: applications in lithium metal batteries, Angew. Chem. Int. Ed., 53, 488, 10.1002/anie.201307137
Miyahara, K., Jin, Y., Munakata, H., and Kanamura, K. (2012). 3DOM polyimide separator for rechargeable lithium batteries with high rate performance. ECS Meeting Abstract MA2012-02, 107.
Huang, 2015, Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects, Energy Storage Mater., 1, 127, 10.1016/j.ensm.2015.09.008
Liang, 2015, Polymer nanofiber-guided uniform lithium deposition for battery electrodes, Nano Lett., 15, 2910, 10.1021/nl5046318
Yun, 2016, Chemical dealloying derived 3D porous current collector for Li metal anodes, Adv. Mater., 28, 6932, 10.1002/adma.201601409
Yang, 2015, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes, Nat. Commun., 6, 8058, 10.1038/ncomms9058
Lu, 2016, Free-standing copper nanowire network current collector for improving lithium anode performance, Nano Lett., 16, 4431, 10.1021/acs.nanolett.6b01581
Yu, 2018, Enhanced stability of lithium metal anode by 3D porous nickel substrate, ChemElectroChem, 5, 761, 10.1002/celc.201701250
Ji, 2012, Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition, Nano Today, 7, 10, 10.1016/j.nantod.2011.11.002
Liu, 2017, Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes, Joule, 1, 563, 10.1016/j.joule.2017.06.004
Zuo, 2017, Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes, Adv. Mater., 29, 10.1002/adma.201700389
Zhamu, 2012, Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells, Energy Environ. Sci., 5, 5701, 10.1039/C2EE02911A
Liu, 2017, Crumpled graphene balls stabilized dendrite-free lithium metal anodes, Joule, 2, 184, 10.1016/j.joule.2017.11.004
Sun, 2016, Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries, Chem, 1, 287, 10.1016/j.chempr.2016.07.009
Lin, 2016, Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes, Nat. Nanotechnol., 11, 626, 10.1038/nnano.2016.32