Advancing Lithium Metal Batteries

Joule - Tập 2 Số 5 - Trang 833-845 - 2018
Bin Liu1, Ji‐Guang Zhang1, Wu Xu1
1Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359, 10.1038/35104644

Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a

Evarts, 2015, Lithium batteries: to the limits of lithium, Nature, 526, S93, 10.1038/526S93a

Choi, 2016, Promise and reality of post-lithium-ion batteries with high energy densities, Nat. Rev. Mater., 1, 16013, 10.1038/natrevmats.2016.13

Liu, 2016, Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries, Nano Today, 11, 82, 10.1016/j.nantod.2016.02.003

Xu, 2014, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7, 513, 10.1039/C3EE40795K

Lin, 2017, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12, 194, 10.1038/nnano.2017.16

Lu, 2014, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nat. Mater., 13, 961, 10.1038/nmat4041

Zhang, 2016, Lithium Metal Anodes and Rechargeable Lithium Metal Batteries, Springer Series in Materials Science, 249, 10.1007/978-3-319-22861-7

Cao, 2015, Anodes for rechargeable lithium-sulfur batteries, Adv. Energy Mater., 5, 1402273, 10.1002/aenm.201402273

Li, 2018, A flexible solid electrolyte interphase layer for long-life lithium metal anodes, Angew. Chem. Int. Ed., 57, 1505, 10.1002/anie.201710806

Wang, 2017, Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels, Adv. Mater., 29, 1703729, 10.1002/adma.201703729

Cheng, 2017, Toward safe lithium metal anode in rechargeable batteries: a review, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115

Zheng, 2017, Electrolyte additive enabled fast charging and stable cycling lithium metal batteries, Nat. Energy, 2, 17012, 10.1038/nenergy.2017.12

Xiang, 2016, Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato) borate dual-salt electrolytes, J. Power Sources, 318, 170, 10.1016/j.jpowsour.2016.04.017

Qian, 2015, High rate and stable cycling of lithium metal anode, Nat. Commun., 6, 6362, 10.1038/ncomms7362

Qian, 2015, Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive, Nano Energy, 15, 135, 10.1016/j.nanoen.2015.04.009

Bouchet, 2013, Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries, Nat. Mater., 12, 452, 10.1038/nmat3602

Suo, 2013, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries, Nat. Commun., 4, 1481, 10.1038/ncomms2513

Yamada, 2014, Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries, J. Am. Chem. Soc., 136, 5039, 10.1021/ja412807w

Yamada, 2015, Review−superconcentrated electrolytes for lithium batteries, J. Electrochem. Soc., 162, A2406, 10.1149/2.0041514jes

Yoon, 2013, Fast charge/discharge of Li metal batteries using an ionic liquid electrolyte, J. Electrochem. Soc., 160, A1629, 10.1149/2.022310jes

Togasaki, 2016, Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium−oxygen battery, J. Power Sources, 307, 98, 10.1016/j.jpowsour.2015.12.123

Zheng, 2017, Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications, Adv. Sci. (Weinh.), 4, 1700032

Ding, 2013, Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode, J. Electrochem. Soc., 160, A1894, 10.1149/2.100310jes

Ding, 2013, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc., 135, 4450, 10.1021/ja312241y

Zhang, 2014, Dendrite-free lithium deposition with self-aligned nanorod structure, Nano Lett., 14, 6889, 10.1021/nl5039117

Ren, 2018, Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives, ACS Energy Lett., 3, 14, 10.1021/acsenergylett.7b00982

Zhang, 2017, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries, Adv. Funct. Mater., 27, 1605989, 10.1002/adfm.201605989

Markevich, 2017, Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution, ACS Energy Lett., 2, 1321, 10.1021/acsenergylett.7b00300

Jeong, 2008, Suppression of dendritic lithium formation by using concentrated electrolyte solutions, Electrochem. Commun., 10, 635, 10.1016/j.elecom.2008.02.006

Liu, 2016, Enhanced cycling stability of rechargeable Li−O2 batteries using high-concentration electrolytes, Adv. Funct. Mater., 26, 605, 10.1002/adfm.201503697

Liu, 2017, Stabilization of Li metal anode in DMSO-based electrolytes via optimization of salt−solvent coordination for Li-O2 batteries, Adv. Energy Mater., 7, 1602605, 10.1002/aenm.201602605

Jiao, 2018, Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries, Joule, 2, 110, 10.1016/j.joule.2017.10.007

Qian, 2016, Anode-free rechargeable lithium metal batteries, Adv. Funct. Mater., 26, 7094, 10.1002/adfm.201602353

Fergus, 2010, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources, 195, 4554, 10.1016/j.jpowsour.2010.01.076

Hallinan, 2013, Polymer electrolytes, Annu. Rev. Mater. Res., 43, 503, 10.1146/annurev-matsci-071312-121705

Sun, 2015, Realization of high performance polycarbonate-based Li polymer batteries, Electrochem. Commun., 52, 71, 10.1016/j.elecom.2015.01.020

Manthiram, 2017, Lithium battery chemistries enabled by solid state electrolytes, Nat. Rev. Mater., 2, 16103, 10.1038/natrevmats.2016.103

Dudney, 1992, Sputtering of lithium compounds for preparation of electrolyte thin films, Solid State Ionics, 53–56, 655, 10.1016/0167-2738(92)90443-S

Kamaya, 2011, A lithium superionic conductor, Nat. Mater., 10, 682, 10.1038/nmat3066

Ohta, 2013, All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing, J. Power Sources, 238, 53, 10.1016/j.jpowsour.2013.02.073

Kotobuki, 2010, Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode, J. Electrochem. Soc., 157, A1076, 10.1149/1.3474232

Sudo, 2014, Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal, Solid State Ionics, 262, 151, 10.1016/j.ssi.2013.09.024

Cheng, 2014, The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes, Phys. Chem. Chem. Phys., 16, 18294, 10.1039/C4CP02921F

Han, 2017, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nat. Mater., 16, 572, 10.1038/nmat4821

Luo, 2017, Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer, Adv. Mater., 29, 10.1002/adma.201606042

Fu, 2016, Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries, Proc. Natl. Acad. Sci. USA, 113, 7094, 10.1073/pnas.1600422113

Duan, 2018, Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers, J. Am. Chem. Soc., 140, 82, 10.1021/jacs.7b10864

Zeng, 2018, Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries, Chem, 4, 298, 10.1016/j.chempr.2017.12.003

Li, 2016, Mastering the interface for advanced all-solid-state lithium rechargeable batteries, Proc. Natl. Acad. Sci. USA, 113, 13313, 10.1073/pnas.1615912113

Kozen, 2017, Stabilization of lithium metal anodes by hybrid artificial solid electrolyte interphase, Chem. Mater., 29, 6298, 10.1021/acs.chemmater.7b01496

Zheng, 2014, Interconnected hollow carbon nanospheres for stable lithium metal anodes, Nat. Nanotechnol., 9, 618, 10.1038/nnano.2014.152

Liu, 2017, Making Li-metal electrodes rechargeable by controlling the dendrite growth direction, Nat. Energy, 2, 17083, 10.1038/nenergy.2017.83

Tu, 2017, Nanoporous hybrid electrolytes for high-energy batteries based on reactive metal anodes, Adv. Energy Mater., 7, 1602367, 10.1002/aenm.201602367

Li, 2016, An artificial solid electrolyte interphase layer for stable lithium metal anodes, Adv. Mater., 28, 1853, 10.1002/adma.201504526

Lee, 2016, Sustainable redox mediation for lithium–oxygen batteries by a composite protective layer on the lithium-metal anode, Adv. Mater., 28, 857, 10.1002/adma.201503169

Zhang, 2015, An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries, J. Power Sources, 277, 304, 10.1016/j.jpowsour.2014.12.023

Pang, 2017, An in vivo formed solid electrolyte surface layer enabled stable plating of Li metal, Joule, 1, 871, 10.1016/j.joule.2017.11.009

Cheng, 2017, Implantable solid electrolyte interphase in lithium-metal batteries, Chem, 2, 258, 10.1016/j.chempr.2017.01.003

Peng, 2017, Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains, Nano Energy, 39, 662, 10.1016/j.nanoen.2017.07.052

Kozen, 2015, Next-generation lithium metal anode engineering via atomic layer deposition, ACS Nano, 9, 5884, 10.1021/acsnano.5b02166

Ye, 2017, Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons, J. Am. Chem. Soc., 139, 5916, 10.1021/jacs.7b01763

Lee, 2017, Suppressing lithium dendrite growth by metallic coating on a separator, Adv. Funct. Mater., 27, 1704391, 10.1002/adfm.201704391

Lu, 2014, Ionic-liquid–nanoparticle hybrid electrolytes: applications in lithium metal batteries, Angew. Chem. Int. Ed., 53, 488, 10.1002/anie.201307137

Miyahara, K., Jin, Y., Munakata, H., and Kanamura, K. (2012). 3DOM polyimide separator for rechargeable lithium batteries with high rate performance. ECS Meeting Abstract MA2012-02, 107.

Huang, 2015, Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects, Energy Storage Mater., 1, 127, 10.1016/j.ensm.2015.09.008

Liang, 2015, Polymer nanofiber-guided uniform lithium deposition for battery electrodes, Nano Lett., 15, 2910, 10.1021/nl5046318

Yun, 2016, Chemical dealloying derived 3D porous current collector for Li metal anodes, Adv. Mater., 28, 6932, 10.1002/adma.201601409

Yang, 2015, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes, Nat. Commun., 6, 8058, 10.1038/ncomms9058

Lu, 2016, Free-standing copper nanowire network current collector for improving lithium anode performance, Nano Lett., 16, 4431, 10.1021/acs.nanolett.6b01581

Yu, 2018, Enhanced stability of lithium metal anode by 3D porous nickel substrate, ChemElectroChem, 5, 761, 10.1002/celc.201701250

Ji, 2012, Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition, Nano Today, 7, 10, 10.1016/j.nantod.2011.11.002

Liu, 2017, Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes, Joule, 1, 563, 10.1016/j.joule.2017.06.004

Zuo, 2017, Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes, Adv. Mater., 29, 10.1002/adma.201700389

Zhamu, 2012, Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells, Energy Environ. Sci., 5, 5701, 10.1039/C2EE02911A

Liu, 2017, Crumpled graphene balls stabilized dendrite-free lithium metal anodes, Joule, 2, 184, 10.1016/j.joule.2017.11.004

Sun, 2016, Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries, Chem, 1, 287, 10.1016/j.chempr.2016.07.009

Lin, 2016, Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes, Nat. Nanotechnol., 11, 626, 10.1038/nnano.2016.32

Liu, 2016, Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement, J. Am. Chem. Soc., 138, 15443, 10.1021/jacs.6b08730