Advancing Biosensors with Machine Learning

ACS Sensors - Tập 5 Số 11 - Trang 3346-3364 - 2020
Feiyun Cui1, Yun Yue2, Yi Zhang3, Ziming Zhang2, H. Susan Zhou1
1Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
2Department of Electrical & Computer Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
3Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, 06269, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.3390/bios8020040

10.1149/2.0252003JES

10.1109/MP.2006.1649009

10.1016/j.bios.2017.11.068

10.1038/361186a0

10.1021/acsami.6b15077

10.1038/s41556-018-0200-6

10.1016/j.bios.2018.01.049

10.1016/j.trac.2019.115668

Weber, P.; Vogler, J.; Gauglitz, G. In Development of an optical biosensor for the detection of antibiotics in the environment, Optical Sensors 2017; International Society for Optics and Photonics: 2017; p 102312L.

10.1016/j.aca.2005.12.067

10.3390/s131013928

10.1016/j.trsl.2019.08.002

10.1016/j.trac.2019.05.014

10.3390/app9071448

10.1021/acsanm.9b02001

10.3390/s20040996

10.1016/j.bios.2008.01.003

10.1016/j.bios.2018.09.046

10.1038/nrd838

Zourob M., 2010, Recognition receptors in biosensors, 10.1007/978-1-4419-0919-0

10.1016/j.trac.2015.03.006

Otto M., 2016, Chemometrics: statistics and computer application in analytical chemistry, 10.1002/9783527699377

10.1016/j.jfca.2015.05.004

10.1016/j.aca.2018.05.023

10.1081/AL-120016533

10.1007/s00216-010-4027-7

10.1002/cem.1100

10.1023/B:JOMC.0000044225.76158.8e

10.1016/j.talanta.2013.11.026

10.1016/j.snb.2008.07.009

10.1016/j.saa.2019.117380

10.1002/cem.2961

10.1016/j.aca.2015.04.011

10.1016/j.bios.2016.04.080

10.1016/j.snb.2009.12.017

10.1021/cr9800964

10.1039/C3CS60183H

10.1016/j.trac.2018.03.005

10.1109/JSEN.2018.2809493

10.1016/j.biosystemseng.2016.04.018

10.1038/s41591-019-0715-9

10.1016/j.bios.2020.112335

10.1016/j.trac.2019.115796

Dasgupta A., 2016, International Journal of Innovative Research in Advanced Engineering (IJIRAE), 3, 6

Ayodele T. O., 2010, New advances in machine learning, 19

10.1016/j.aca.2019.06.012

Shanthamallu, U. S.; Spanias, A.; Tepedelenlioglu, C.; Stanley, M. In A brief survey of machine learning methods and their sensor and IoT applications; 2017 8th International Conference on Information, Intelligence, Systems & Applications (IISA), IEEE: 2017; pp 1–8.

Bishop C. M., 2006, Pattern recognition and machine learning

10.1038/s41467-019-12898-9

10.1021/acs.analchem.9b03599

10.1016/j.compbiomed.2017.09.017

Mitchell R., 2013, An artificial intelligence approach

Thirukovalluru, R.; Dixit, S.; Sevakula, R. K.; Verma, N. K.; Salour, A. In Generating feature sets for fault diagnosis using denoising stacked auto-encoder; 2016 IEEE International Conference on Prognostics and Health Management (ICPHM), IEEE: 2016; pp 1–7.

10.1149/1945-7111/ab67a8

He, K.; Zhang, X.; Ren, S.; Sun, J. In Delving deep into rectifiers: Surpassing human-level performance on imagenet classification; Proceedings of the IEEE international conference on computer vision, 2015; pp 1026–1034.

Glorot, X.; Bengio, Y. In Understanding the difficulty of training deep feedforward neural networks; Proceedings of the thirteenth international conference on artificial intelligence and statistics, 2010; pp 249–256.

10.1021/acs.analchem.5b00137

10.1016/j.talanta.2006.10.023

Goodfellow I., 2016, Deep learning

Tania, M. H.; Lwin, K. T.; Shabut, A. M.; Abu-Hassan, K. J.; Kaiser, M. S.; Hossain, M. In Assay Type Detection Using Advanced Machine Learning Algorithms; 2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA), IEEE: 2019; pp 1–8.

10.1021/acsnano.9b09119

10.1117/1.1897396

10.1186/s13036-017-0051-x

Awad M., 2015, Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, 67, 10.1007/978-1-4302-5990-9_4

10.4249/scholarpedia.1883

10.1016/S0031-3203(99)00186-7

10.1016/j.procs.2018.01.125

Islam, M. M.; Iqbal, H.; Haque, M. R.; Hasan, M. K. In Prediction of breast cancer using support vector machine and K-Nearest neighbors; 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), IEEE: 2017; pp 226–229.

10.1016/j.eswa.2010.08.137

10.1016/j.eswa.2013.08.089

Singh, A.; Thakur, N.; Sharma, A. In A review of supervised machine learning algorithms; 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), IEEE: 2016; pp 1310–1315.

Si, S.; Zhang, H.; Keerthi, S. S.; Mahajan, D.; Dhillon, I. S.; Hsieh, C.J. In Gradient Boosted Decision Trees for High Dimensional Sparse Output; International Conference on Machine Learning, 2017; pp 3182–3190.

10.1016/j.bspc.2017.01.012

10.1109/TPAMI.2006.211

10.1016/j.aca.2020.06.043

10.1016/j.ejor.2016.10.031

10.1016/B978-0-12-818597-1.50019-9

10.1016/j.eswa.2011.09.058

10.1111/j.1467-8640.2012.00425.x

10.1021/acssensors.9b01227

10.1080/03235408.2013.772321

10.1109/TMI.2016.2532122

10.1109/TMI.2016.2538465

10.1109/TMI.2016.2536809

Maas, A. L.; Hannun, A. Y.; Ng, A. Y. In Rectifier nonlinearities improve neural network acoustic models, 2013; p 3.

Bridle J. S., 1990, Neurocomputing, 227, 10.1007/978-3-642-76153-9_28

10.1002/cem.2977

Tsantekidis, A.; Passalis, N.; Tefas, A.; Kanniainen, J.; Gabbouj, M.; Iosifidis, A. In Forecasting stock prices from the limit order book using convolutional neural networks; 2017 IEEE 19th Conference on Business Informatics (CBI), IEEE: 2017; pp 7–12.

10.1088/1741-2560/14/1/016003

Lee J., 2017, arXiv

10.1021/acsnano.8b07024

Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. In Going deeper with convolutions; Proceedings of the IEEE conference on computer vision and pattern recognition, 2015; pp 1–9.

10.1016/j.aca.2019.01.002

Lipton Z. C., 2015, arXiv

10.3390/s16010115

10.1093/bioinformatics/btw678

Kiddon, C.; Zettlemoyer, L.; Choi, Y. In Globally coherent text generation with neural checklist models; Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016; pp 329–339.

Takeuchi, D.; Yatabe, K.; Koizumi, Y.; Oikawa, Y.; Harada, N. In Real-time speech enhancement using equilibriated RNN; ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE: 2020; pp 851–855.

Miao, Y.; Gowayyed, M.; Metze, F. In EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding; 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), IEEE: 2015; pp 167–174.

Doetsch, P.; Kozielski, M.; Ney, H. In Fast and robust training of recurrent neural networks for offline handwriting recognition; 2014 14th International Conference on Frontiers in Handwriting Recognition, IEEE: 2014; pp 279–284.

Williams J. D., 2016, arXiv

Zoph B., 2016, arXiv

10.1093/database/bay066

10.1093/database/bay060

Peng Y., 2018, arXiv

Zhao, X.; Wu, Y.; Song, G.; Li, Z.; Fan, Y.; Zhang, Y. In Brain tumor segmentation using a fully convolutional neural network with conditional random fields, International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Springer: 2016; pp 75–87.

10.1162/neco.1997.9.8.1735

10.1038/s41467-019-10168-2

10.1371/journal.pone.0178751

10.1186/s13059-018-1462-9

10.1016/j.biosystemseng.2018.09.007

10.3390/s16111483

10.1039/C8AN00065D

10.1021/acssensors.9b02451

10.1007/s40820-019-0239-3

10.1088/1361-6528/aa8334

10.1038/s41598-018-24208-2

González-Calabuig A., 2017, High dimensionality voltammetric biosensor data processed with artificial neural networks

10.1016/j.bios.2019.111718

10.1016/j.snb.2020.127660

10.1016/j.aca.2008.08.009

10.1002/elan.200603855

10.3109/21691401.2014.942456

10.1016/0022-0728(94)87056-X

10.1021/acsomega.9b03660

10.1038/s41565-018-0236-6

10.1073/pnas.0705349105

10.1038/nnano.2007.27

10.1038/nnano.2015.320

10.1038/nnano.2015.307

10.1038/ncomms13868

10.1021/jacs.8b10854

10.1038/s41598-018-34665-4

10.1038/nnano.2014.54

10.1038/s41598-017-17443-6

10.1021/acs.analchem.7b04950

10.1126/sciadv.aav9653

10.1126/sciadv.1601185

10.1038/nature25494

10.1038/ncomms6747

10.1039/C9LC00103D

10.1038/s41587-019-0321-x

10.1126/scitranslmed.aaf2593

10.1039/C6NR04467K

10.1039/c2cc32839a

10.1126/science.1206157

10.1002/adma.201902083

10.1038/s41586-019-1234-z

10.1126/sciadv.abd4794

Larkin P. J., 2018, Infrared and Raman Spectroscopy, 1

10.1038/srep06785

10.1002/cem.3184

10.1039/C7AN01371J

10.1016/j.aca.2016.12.010

10.1021/acs.analchem.9b04946

10.1016/j.bios.2016.09.082

10.1039/C9AY01005J

Fan, Q.; Chen, G.; Zhou, X.; Li, L. In Image Threshold Segmentation Based on Auxiliary Individual Oriented Crossover Genetic Algorithm; 2019 IEEE International Conference on Industrial Internet (ICII), IEEE: 2019; pp 411–416.

He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. In Mask R-CNN; 2017 IEEE International Conference on Computer Vision (ICCV), 22–29 Oct. 2017; 2017; pp 2980–2988.

10.1038/nbt.1641

10.1021/acsnano.8b08582

10.1021/acssensors.0c00219

10.3390/bios8030085

10.1016/j.snb.2017.08.220

10.1016/j.snb.2014.01.077

10.1149/2.0081909jes

10.1364/AO.56.000084

10.1038/s41746-020-0274-y

10.1039/C9AN02267H

10.1039/C4LC01358A

10.1039/C9CC07186E

10.1016/j.bios.2020.112513

10.1016/j.snb.2018.05.100

10.1016/j.jestch.2019.06.011

10.1039/c0lc00587h

10.3390/s16111836

10.1371/journal.pone.0104539

10.1016/j.vlsi.2014.07.004

10.1039/C8LC01387J

10.1002/elan.201600055

10.3390/s20030625

10.1016/j.foodcont.2019.03.032

Nguyen, C. Q. Machine Learning for SERS Quantitative Detection of Pyocyanin; UC Irvine, 2018.

10.1021/acs.analchem.8b03080

10.3390/s16101569

Liggins M., 2017, Handbook of multisensor data fusion: theory and practice, 10.1201/9781420053098

10.1109/5.554206

10.1016/j.inffus.2016.09.005

Bahrepour M., 2011, Sensor Fusion-Foundation and Applications, 171

10.1016/j.snb.2007.02.027