Advancing Biosensors with Machine Learning
Tóm tắt
Từ khóa
Tài liệu tham khảo
Weber, P.; Vogler, J.; Gauglitz, G. In Development of an optical biosensor for the detection of antibiotics in the environment, Optical Sensors 2017; International Society for Optics and Photonics: 2017; p 102312L.
Otto M., 2016, Chemometrics: statistics and computer application in analytical chemistry, 10.1002/9783527699377
Dasgupta A., 2016, International Journal of Innovative Research in Advanced Engineering (IJIRAE), 3, 6
Ayodele T. O., 2010, New advances in machine learning, 19
Shanthamallu, U. S.; Spanias, A.; Tepedelenlioglu, C.; Stanley, M. In A brief survey of machine learning methods and their sensor and IoT applications; 2017 8th International Conference on Information, Intelligence, Systems & Applications (IISA), IEEE: 2017; pp 1–8.
Bishop C. M., 2006, Pattern recognition and machine learning
Mitchell R., 2013, An artificial intelligence approach
Thirukovalluru, R.; Dixit, S.; Sevakula, R. K.; Verma, N. K.; Salour, A. In Generating feature sets for fault diagnosis using denoising stacked auto-encoder; 2016 IEEE International Conference on Prognostics and Health Management (ICPHM), IEEE: 2016; pp 1–7.
He, K.; Zhang, X.; Ren, S.; Sun, J. In Delving deep into rectifiers: Surpassing human-level performance on imagenet classification; Proceedings of the IEEE international conference on computer vision, 2015; pp 1026–1034.
Glorot, X.; Bengio, Y. In Understanding the difficulty of training deep feedforward neural networks; Proceedings of the thirteenth international conference on artificial intelligence and statistics, 2010; pp 249–256.
Goodfellow I., 2016, Deep learning
Tania, M. H.; Lwin, K. T.; Shabut, A. M.; Abu-Hassan, K. J.; Kaiser, M. S.; Hossain, M. In Assay Type Detection Using Advanced Machine Learning Algorithms; 2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA), IEEE: 2019; pp 1–8.
Awad M., 2015, Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, 67, 10.1007/978-1-4302-5990-9_4
Islam, M. M.; Iqbal, H.; Haque, M. R.; Hasan, M. K. In Prediction of breast cancer using support vector machine and K-Nearest neighbors; 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), IEEE: 2017; pp 226–229.
Singh, A.; Thakur, N.; Sharma, A. In A review of supervised machine learning algorithms; 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), IEEE: 2016; pp 1310–1315.
Si, S.; Zhang, H.; Keerthi, S. S.; Mahajan, D.; Dhillon, I. S.; Hsieh, C.J. In Gradient Boosted Decision Trees for High Dimensional Sparse Output; International Conference on Machine Learning, 2017; pp 3182–3190.
Maas, A. L.; Hannun, A. Y.; Ng, A. Y. In Rectifier nonlinearities improve neural network acoustic models, 2013; p 3.
Tsantekidis, A.; Passalis, N.; Tefas, A.; Kanniainen, J.; Gabbouj, M.; Iosifidis, A. In Forecasting stock prices from the limit order book using convolutional neural networks; 2017 IEEE 19th Conference on Business Informatics (CBI), IEEE: 2017; pp 7–12.
Lee J., 2017, arXiv
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. In Going deeper with convolutions; Proceedings of the IEEE conference on computer vision and pattern recognition, 2015; pp 1–9.
Lipton Z. C., 2015, arXiv
Kiddon, C.; Zettlemoyer, L.; Choi, Y. In Globally coherent text generation with neural checklist models; Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016; pp 329–339.
Takeuchi, D.; Yatabe, K.; Koizumi, Y.; Oikawa, Y.; Harada, N. In Real-time speech enhancement using equilibriated RNN; ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE: 2020; pp 851–855.
Miao, Y.; Gowayyed, M.; Metze, F. In EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding; 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), IEEE: 2015; pp 167–174.
Doetsch, P.; Kozielski, M.; Ney, H. In Fast and robust training of recurrent neural networks for offline handwriting recognition; 2014 14th International Conference on Frontiers in Handwriting Recognition, IEEE: 2014; pp 279–284.
Williams J. D., 2016, arXiv
Zoph B., 2016, arXiv
Peng Y., 2018, arXiv
Zhao, X.; Wu, Y.; Song, G.; Li, Z.; Fan, Y.; Zhang, Y. In Brain tumor segmentation using a fully convolutional neural network with conditional random fields, International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Springer: 2016; pp 75–87.
González-Calabuig A., 2017, High dimensionality voltammetric biosensor data processed with artificial neural networks
Larkin P. J., 2018, Infrared and Raman Spectroscopy, 1
Fan, Q.; Chen, G.; Zhou, X.; Li, L. In Image Threshold Segmentation Based on Auxiliary Individual Oriented Crossover Genetic Algorithm; 2019 IEEE International Conference on Industrial Internet (ICII), IEEE: 2019; pp 411–416.
He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. In Mask R-CNN; 2017 IEEE International Conference on Computer Vision (ICCV), 22–29 Oct. 2017; 2017; pp 2980–2988.
Nguyen, C. Q. Machine Learning for SERS Quantitative Detection of Pyocyanin; UC Irvine, 2018.
Bahrepour M., 2011, Sensor Fusion-Foundation and Applications, 171