Advances in understanding glaucoma pathogenesis: A multifaceted molecular approach for clinician scientists

Molecular Aspects of Medicine - Tập 94 - Trang 101223 - 2023
Eren Ekici1, Sasan Moghimi2
1T.R. (Republic of Turkey) Ministry of Health, Ankara Etlik City Hospital, Department of Ophthalmology, Ankara, Turkiye
2Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA

Tài liệu tham khảo

Agarwal, 2009, Current concepts in the pathophysiology of glaucoma, Indian J. Ophthalmol., 57, 257, 10.4103/0301-4738.53049 Arciero, 2013, Theoretical analysis of vascular regulatory mechanisms contributing to retinal blood flow autoregulation, Invest. Ophthalmol. Vis. Sci., 54, 5584, 10.1167/iovs.12-11543 Azzouni, 2011, Are phosphodiesterase type 5 inhibitors associated with vision- threatening adverse events? A critical analysis and review of the literature, J. Sex. Med., 8, 2894, 10.1111/j.1743-6109.2011.02382.x Badawi, 2019, Primary congenital glaucoma: an updated review, Saudi J. Ophthalmol., 33, 382, 10.1016/j.sjopt.2019.10.002 Bader, 2020, 163 Bayer, 2002, Association of glaucoma with neurodegenerative diseases with apoptotic cell death: Alzheimer's disease and Parkinson's disease, Am. J. Ophthalmol., 133, 135, 10.1016/S0002-9394(01)01196-5 Boehm, 2005, The effect of age on optic nerve head blood flow, Invest. Ophthalmol. Vis. Sci., 46, 1291, 10.1167/iovs.04-0987 Burgoyne, 2005, The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage, Prog. Retin. Eye Res., 24, 39, 10.1016/j.preteyeres.2004.06.001 Casson, 2006, Possible role of excitotoxicity in the pathogenesis of glaucoma, Clin. Exp. Ophthalmol., 34, 54, 10.1111/j.1442-9071.2006.01146.x Casson, 2012, Definition of glaucoma: clinical and experimental concepts, Clin. Exp. Ophthalmol., 40, 341, 10.1111/j.1442-9071.2012.02773.x Cherecheanu, 2013, Ocular perfusion pressure and ocular blood flow in glaucoma, Curr. Opin. Pharmacol., 13, 36, 10.1016/j.coph.2012.09.003 Clark, 2012, The cell and molecular biology of glaucoma: biomechanical factors in glaucoma, Invest. Ophthalmol. Vis. Sci., 53, 2473, 10.1167/iovs.12-9483g Coleman, 2008, Risk factors for glaucoma onset and progression, Surv. Ophthalmol., 53, S3, 10.1016/j.survophthal.2008.08.006 Crish, 2011, Neurodegeneration in glaucoma: progression and calcium-dependent intracellular mechanisms, Neuroscience, 176, 1, 10.1016/j.neuroscience.2010.12.036 Danesh-Meyer, 2010, Optic disc morphology in open-angle glaucoma compared with anterior ischemic optic neuropathies, Invest. Ophthalmol. Vis. Sci., 51, 2003, 10.1167/iovs.09-3492 David, 2021, Rates of retinal nerve fiber layer thinning in distinct glaucomatous optic disc phenotypes in early glaucoma, Am. J. Ophthalmol., 229, 8, 10.1016/j.ajo.2021.04.010 DeMaio, 2022, The role of the adaptive immune system and T cell dysfunction in neurodegenerative diseases, J. Neuroinflammation, 19, 251, 10.1186/s12974-022-02605-9 Dimitriou, 2013, Pathophysiology of glaucoma. In Glaucoma: Basic and Clinical perspectives, Future Med., 32 Dorner, 2003, Nitric oxide regulates retinal vascular tone in humans, Am. J. Physiol. Heart Circ. Physiol., 285, H631, 10.1152/ajpheart.00111.2003 Doucette, 2015, The interactions of genes, age, and environment in glaucoma pathogenesis, Surv. Ophthalmol., 60, 310, 10.1016/j.survophthal.2015.01.004 Downs, 2011, Glaucomatous cupping of the lamina cribrosa: a review of the evidence for active progressive remodeling as a mechanism, Exp. Eye Res., 93, 133, 10.1016/j.exer.2010.08.004 Ekici, 2020, Capillary density measured by optical coherence tomography angiography in glaucomatous optic disc phenotypes, Am. J. Ophthalmol., 219, 261, 10.1016/j.ajo.2020.06.012 Ekici, 2021, Central visual field defects in patients with distinct glaucomatous optic disc phenotypes, Am. J. Ophthalmol., 223, 229, 10.1016/j.ajo.2020.10.015 Elahi, 2020, Genetic basis of primary angle closure glaucoma: the role of collagens and extracellular matrix, J. Ophthalmic Vis. Res., 15, 1 Ethier, 2006, Scleral biomechanics and glaucoma--a connection?, Can. J. Ophthalmol., 41, 9, 10.1016/S0008-4182(06)80060-8 Foster, 2002, The definition and classification of glaucoma in prevalence surveys, Br. J. Ophthalmol., 86, 238, 10.1136/bjo.86.2.238 Garhofer, 2019, Nitric oxide: a drug target for glaucoma revisited, Drug Discov. Today, 24, 1614, 10.1016/j.drudis.2019.05.033 Ge, 2016, The soluble guanylate cyclase stimulator IWP-953 increases conventional outflow facility in mouse eyes, Invest. Ophthalmol. Vis. Sci., 57, 1317, 10.1167/iovs.15-18958 He, 2018, Targets of neuroprotection in glaucoma, J. Ocul. Pharmacol. Therapeut., 34, 85, 10.1089/jop.2017.0041 Hernandez, 2000, The optic nerve head in glaucoma: role of astrocytes in tissue remodeling, Prog. Retin. Eye Res., 19, 297, 10.1016/S1350-9462(99)00017-8 Huang, 2004, Glutamate transporters bring competition to the synapse, Curr. Opin. Neurobiol., 14, 346, 10.1016/j.conb.2004.05.007 Ingelfinger, 2022, Single-cell multiomics in neuroinflammation, Curr. Opin. Immunol., 76, 10.1016/j.coi.2022.102180 Izzotti, 2006, The role of oxidative stress in glaucoma, Mutat. Res., 612, 105, 10.1016/j.mrrev.2005.11.001 Jain, 2013, Endothelin-1-induced endoplasmic reticulum stress in disease, J. Pharmacol. Exp. Therapeut., 346, 163, 10.1124/jpet.113.205567 Jonas, 2015, Cerebrospinal fluid pressure in the pathogenesis of glaucoma, Prog. Brain Res., 221, 33, 10.1016/bs.pbr.2015.06.002 Keller, 2022, Pathogenesis of glaucoma: extracellular matrix dysfunction in the trabecular meshwork-A review, Clin. Exp. Ophthalmol., 50, 163, 10.1111/ceo.14027 Kim, 2022, Matrix metalloproteinases and glaucoma, Biomolecules, 12, 1368, 10.3390/biom12101368 Kumada, 2005, Tissue type plasminogen activator facilitates NMDA-receptor–mediated retinal apoptosis through an independent fibrinolytic cascade, Invest. Ophthalmol. Vis. Sci., 46, 1504, 10.1167/iovs.04-0595 Lascaratos, 2015, Resistance to the most common optic neuropathy is associated with systemic mitochondrial efficiency, Neurobiol. Dis., 82, 78, 10.1016/j.nbd.2015.05.012 Last, 2011, Elastic modulus determination of normal and glaucomatous human trabecular meshwork, Invest. Ophthalmol. Vis. Sci., 52, 2147, 10.1167/iovs.10-6342 Lawrenson, 2013, 3 Levin, 2011, Ocular circulation, 243 Manalastas, 2018, The association between macula and ONH optical coherence tomography angiography (OCT-A) vessel densities in glaucoma, glaucoma suspect and healthy eyes, J. Glaucoma, 27, 227, 10.1097/IJG.0000000000000862 Miller, 2017, Genetics and genetic testing for glaucoma, Curr. Opin. Ophthalmol., 28, 133, 10.1097/ICU.0000000000000344 Nicolela, 2008, Clinical clues of vascular dysregulation and its association with glaucoma, Can. J. Ophthalmol., 43, 337, 10.3129/i08-063 Nicolela, 2003, Visual field and optic disc progression in patients with different types of optic disc damage: a longitudinal prospective study, Ophthalmology, 110, 2178, 10.1016/S0161-6420(03)00801-7 Oguz, 2005, No effects of long-term sildenafil treatment on ocular functions, Ann. Ophthalmol., 37, 85, 10.1385/AO:37:2:085 Olivares-Gonzalez, 2016, cGMP-phosphodiesterase inhibition prevents hypoxia-induced cell death activation in porcine retinal explants, PLoS One, 11, 10.1371/journal.pone.0166717 Orrenius, 2007, Mitochondrial oxidative stress: implications for cell death, Annu. Rev. Pharmacol. Toxicol., 47, 143, 10.1146/annurev.pharmtox.47.120505.105122 Park, 2019, Association between parapapillary choroidal vessel density measured with optical coherence tomography angiography and future visual field progression in patients with glaucoma, JAMA Ophthalmol., 137, 681, 10.1001/jamaophthalmol.2019.0422 Phipps, 2019, The renin- angiotensin system and the retinal neurovascular unit: a role in vascular regulation and disease, Exp. Eye Res., 187, 10.1016/j.exer.2019.107753 Polak, 2007, Altered nitric oxide system in patients with open-angle glaucoma, Arch. Ophthalmol., 125, 494, 10.1001/archopht.125.4.494 Prasanna, 2018, A novel selective soluble guanylate cyclase activator, MGV354, lowers intraocular pressure in preclinical models, following topical ocular dosing, Invest. Ophthalmol. Vis. Sci., 59, 1704, 10.1167/iovs.18-23772 Rao, 2020, Optical coherence tomography angiography in glaucoma, J. Glaucoma, 29, 312, 10.1097/IJG.0000000000001463 Reinhard, 2021, Extracellular matrix remodeling in the retina and optic nerve of a novel glaucoma mouse model, Biology, 10, 169, 10.3390/biology10030169 Reszec, 2012, HIF-1 expression in retinal ganglion cells and optic nerve axons in glaucoma, Folia Histochem. Cytobiol., 50, 456, 10.5603/FHC.2012.0063 Rong, 2021, Pathogenesis and prospects for therapeutic clinical application of noncoding RNAs in glaucoma: systematic perspectives, J. Cell. Physiol., 236, 7097, 10.1002/jcp.30347 Sacca, 2008, Oxidative stress and glaucoma: injury in the anterior segment of the eye, Prog. Brain Res., 173, 385, 10.1016/S0079-6123(08)01127-8 Schmidl, 2011, The complex interaction between ocular perfusion pressure and ocular blood flow–relevance for glaucoma, Exp. Eye Res., 93, 141, 10.1016/j.exer.2010.09.002 Shigeri, 2004, Molecular pharmacology of glutamate transporters, EAATs and VGLUTs, Brain Res. Brain Res. Rev., 45, 250, 10.1016/j.brainresrev.2004.04.004 Shinozaki, 2021, Potential roles of astrocytes and Muller cells in the pathogenesis of glaucoma, J. Pharmacol. Sci., 145, 262, 10.1016/j.jphs.2020.12.009 Skopinski, 2021, New perspectives of immunomodulation and neuroprotection in glaucoma, Cent. Eur. J. Immunol., 46, 105, 10.5114/ceji.2021.104329 Tezel, 2022, Molecular regulation of neuroinflammation in glaucoma: current knowledge and the ongoing search for new treatment targets, Prog. Retin. Eye Res., 87, 10.1016/j.preteyeres.2021.100998 Tezel, 2004, Hypoxia-inducible factor 1α in the glaucomatous retina and OpticNerve head, Arch. Ophthalmol., 122, 1348, 10.1001/archopht.122.9.1348 Tham, 2014, Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis, Ophthalmology, 121, 2081, 10.1016/j.ophtha.2014.05.013 Toda, 2007, Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy, Prog. Retin. Eye Res., 26, 205, 10.1016/j.preteyeres.2007.01.004 Varma, 2011, An assessment of the health and economic burdens of glaucoma, Am. J. Ophthalmol., 152, 515, 10.1016/j.ajo.2011.06.004 Venkataraman, 2010, Vascular reactivity of optic nerve head and retinal blood vessels in glaucoma--a review, Microcirculation, 17, 568 Vohra, 2019, Potential metabolic markers in glaucoma and their regulation in response to hypoxia, Acta Ophthalmol., 97, 567, 10.1111/aos.14021 Wang, 2014, Retinal ganglion cell death is triggered by paraptosis via reactive oxygen species production: a brief literature review presenting a novel hypothesis in glaucoma pathology, Mol. Med. Rep., 10, 1179, 10.3892/mmr.2014.2346 Wang, 2022, The genetic basis for adult onset glaucoma: recent advances and future directions, Prog. Retin. Eye Res., 90, 10.1016/j.preteyeres.2022.101066 Wareham, 2018, The nitric oxide-guanylate cyclase pathway and glaucoma, Nitric Oxide, 77, 75, 10.1016/j.niox.2018.04.010 Wareham, 2019, Increased bioavailability of cyclic guanylate monophosphate prevents retinal ganglion cell degeneration, Neurobiol. Dis., 121, 65, 10.1016/j.nbd.2018.09.002 Weinreb, 2014, The pathophysiology and treatment of glaucoma: a review, JAMA, 311, 1901, 10.1001/jama.2014.3192 Weinreb, 2020, Matrix metalloproteinases and glaucoma treatment, J. Ocul. Pharmacol. Therapeut., 36, 208, 10.1089/jop.2019.0146 Werner, 2019, 279 Wiggs, 2017, Genetics of glaucoma, Hum. Mol. Genet., 26, R21, 10.1093/hmg/ddx184 Williams, 2017, Nicotinamide and WLD(S) act together to prevent neurodegeneration in glaucoma, Front. Neurosci., 11, 232, 10.3389/fnins.2017.00232 Worley, 2011, Risk factors for glaucoma: what do they really mean?, Aust. J. Prim. Health, 17, 233, 10.1071/PY10042 Yang, 2011, Neurodegenerative and inflammatory pathway components linked to TNF-alpha/TNFR1 signaling in the glaucomatous human retina, Invest. Ophthalmol. Vis. Sci., 52, 8442, 10.1167/iovs.11-8152 Yang, 2020, Transgenic inhibition of astroglial NF-kappaB restrains the neuroinflammatory and neurodegenerative outcomes of experimental mouse glaucoma, J. Neuroinflammation, 17, 252, 10.1186/s12974-020-01930-1 Yang, 2021, Regulation of distinct caspase-8 functions in retinal ganglion cells and astroglia in experimental glaucoma, Neurobiol. Dis., 150, 10.1016/j.nbd.2021.105258 Yarmohammadi, 2017, Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect, Ophthalmology, 124, 709, 10.1016/j.ophtha.2017.01.004 Zhang, 2016, High pressure-induced mtDNA alterations in retinal ganglion cells and subsequent apoptosis, Front. Cell. Neurosci., 10, 254, 10.3389/fncel.2016.00254