Advances in the synthesis and applications of nanomaterials to increase CO2 biofixation in microalgal cultivation

Springer Science and Business Media LLC - Tập 25 - Trang 617-632 - 2021
Michele Greque de Morais1, Bruna Pereira Vargas1, Bruna da Silva Vaz1, Bruna Barcelos Cardias2,3, Jorge Alberto Vieira Costa2
1Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
2Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
3Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil

Tóm tắt

Microalgae, through photosynthesis, can convert atmospheric CO2 into biomass to produce biofuels and high value-added bioproducts. The improvement of cultivation systems helps in the conversion of gases into biomass and, consequently, increases microalgal productivity. Recently, studies involving the technology of physical adsorption with nanomaterials have shown promising results in increasing CO2 biofixation by microalgae. Polymeric nanoparticles produced by the electrospraying technique stand out as potential adsorbent materials for CO2 capture due to the high surface area per unit volume formed by many active sites that increase the gas adsorption capacity in a liquid medium. The interactions between microorganisms and nanomaterials have revealed the potential of nanobiotechnology to contribute to more sustainable environmental processes. Nanofibers and nanoparticles can be used for greenhouse gas mitigation processes and effluent treatment. Moreover, the development of these methodologies can contribute to the viability of large-scale microalgae cultivations for CO2 mitigation. Based on these methodologies, the objective of this review is to address the advances in nanobiotechnology to increase CO2 biofixation by microalgae. The potential of adsorbent nanoparticles developed by the electrospraying technique and the key points for applying the electrospraying technique for this purpose are also discussed.

Tài liệu tham khảo

Abdolahi-Mansoorkhani H, Seddighi S (2019) H2S and CO2 capture from gaseous fuels using nanoparticle membrane. Energy 168:847–857. https://doi.org/10.1016/j.energy.2018.11.117 Agarwal P, Gupta R, Agarwal N (2019) Advances in synthesis and applications of microalgal nanoparticles for wastewater treatment. J Nanotechnol 2019:1–9. https://doi.org/10.1155/2019/7392713 Agi A, Junin R, Gbonhinbor J, Onyekonwu M (2018) Natural polymer flow behaviour in porous media for enhanced oil recovery applications: a review. J Pet Explor Prod Technol 8:1349–1362. https://doi.org/10.1007/s13202-018-0434-7 Ali M, Al-Anssari S, Arif M, Barifcani A, Sarmadivaleh M, Stalker L, Lebedev M, Iglauer S (2019) Organic acid concentration thresholds for ageing of carbonate minerals: implications for CO2 trapping/storage. J Colloid Interface Sci 534:88–94. https://doi.org/10.1016/j.jcis.2018.08.106 Aresta M, Dibenedetto A, Angelini A (2013) The changing paradigm in CO2 utilization. J CO2 Util 34:65–73. https://doi.org/10.1016/j.jcou.2013.08.001 Asmaly HA, Abussaud B, Ihsanullah STA, Gupta VK, Atieh MA (2015) Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: from synthesis to enhanced removal of phenol. J Saudi Chem Soc 19:511–520. https://doi.org/10.1016/j.jscs.2015.06.002 Barabadi H (2017) Nanobiotechnology: a promising scope of gold biotechnology. Cell Mol Biol 63:3–4. https://doi.org/10.14715/cmb/2017.63.12.2 Barret EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. J Am Chem Soc 73:373–380. https://doi.org/10.1021/ja01145a126 Beltzung A, Klaue A, Colombo C, Wu H, Storti G, Morbidelli M (2018) Polyacrylonitrile nanoparticle-derived hierarchical structure for CO2 capture. Energy Technol 6:718–727. https://doi.org/10.1002/ente.201700649 Bera A, Belhaj H (2016) Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery—a comprehensive review. J Nat Gas Sci Eng 34:1284–1309. https://doi.org/10.1016/j.jngse.2016.08.023 Bock N, Dargaville TR, Woodruff MA (2012) Electrospraying of polymers with therapeutic molecules: state of the art. Prog Polym Sci 37:1510–1551. https://doi.org/10.1016/j.progpolymsci.2012.03.002 Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. https://doi.org/10.1021/ja01269a023 Campos EA, Pinto DVBS, Oliveira JISD, Mattos EDC, Dutra RDCL (2015) Synthesis, characterization and applications of iron oxide nanoparticles-a short review. J Aerosp Technol Manag 7:267–276. https://doi.org/10.5028/jatm.v7i3.471 Cardias BB, Morais MG, Costa JAV (2018) CO2 conversion by the integration of biological and chemical methods: Spirulina sp. LEB 18 cultivation with diethanolamine and potassium carbonate addition. Bioresour Technol 267:77–83. https://doi.org/10.1016/j.biortech.2018.07.031 Chaúque EFC, Dlamini LN, Adelodun AA, Greyling CJ, Ngila JC (2017) Electrospun polyacrylonitrile nanofibers functionalized with EDTA for adsorption of ionic dyes. Phys Chem Earth 100:201–211. https://doi.org/10.1016/j.pce.2016.10.008 Cheng J, Zhu Y, Li K, Lu H, Shi Z (2020) Calcinated MIL-100 (Fe) as a CO2 adsorbent to promote biomass productivity of Arthrospira platensis cells. Sci Total Environ 699:134375. https://doi.org/10.1016/j.scitotenv.2019.134375 Comitre AA, Vaz BS, Costa JAV, Morais MG (2021) Renewal of nanofibers in Chorella fusca microalgae cultivation to increase CO2 fixation. Bioresour Technol 321:124452. https://doi.org/10.1016/j.biortech.2020.124452 Costa JAV, Freitas BCB, Lisboa CR, Santos TD, Brusch LRF, Morais MG (2019) Microalgal biorefinery from CO2 and the effects under the Blue Economy. Renew Sustain Energy Rev 99:58–65. https://doi.org/10.1016/j.rser.2018.08.009 Crucho CI, Barros MT (2017) Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng C 80:771–784. https://doi.org/10.1016/j.msec.2017.06.004 Daneshvar E, Wicker RJ, Show PL, Bhatnagar A (2022) Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization—a review. Chem Eng J 427:130884. https://doi.org/10.1016/j.cej.2021.130884 De la Calle I, Menta M, Séby F (2016) Current trends and challenges in sample preparation for metallic nanoparticles analysis in daily products and environmental samples: a review. Spectrochim Acta Part B 125:66–96. https://doi.org/10.1016/j.sab.2016.09.007 Dongargaonkar AA, Clogston JD (2018) Quantitation of surface coating on nanoparticles using thermogravimetric analysis. Methods Mol Biol 1682:57–63. https://doi.org/10.1007/978-1-4939-7352-1_6 Duman F, Sahin U, Atabani AE (2019) Harvesting of blooming microalgae using green synthetized magnetic maghemite (γ-Fe2O3) nanoparticles for biofuel production. Fuel 256:115935. https://doi.org/10.1016/j.fuel.2019.115935 Dwivedi C, Pandey I, Pandey H, Ramteke PW, Pandey AC, Mishra SB, Patil S (2017) Electrospun nanofibrous scaffold as a potential carrier of antimicrobial therapeutics for diabetic wound healing and tissue regeneration. In: Grumezescu AM (ed) Nano- and microscale drug delivery systems. Elsevier, Amsterdam, pp 147–164 El-Gendy NS, Nassar HN (2021) Biosynthesized magnetite nanoparticles as an environmental opulence and sustainable wastewater treatment. Sci Total Environ 774:145610. https://doi.org/10.1016/j.scitotenv.2021.145610 Fu W, Zhang W (2018) Measurement of the surface hydrophobicity of engineered nanoparticles using an atomic force microscope. Phys Chem Chem Phys 20:24434–24443. https://doi.org/10.1039/c8cp04676j He X (2021) Polyvinylamine-based facilitated transport membranes for post-combustion CO2 capture: challenges and perspectives from materials to processes. Engineering 7:124–131. https://doi.org/10.1016/j.eng.2020.11.001 Hemmati F, Bahrami A, Esfanjani AF, Hosseini H, McClements DJ, Williams L (2021) Electrospun antimicrobial materials: advanced packaging materials for food applications. Trends Food Sci Technol 111:520–533. https://doi.org/10.1016/j.tifs.2021.03.014 Hosseini-Ardali SM, Hazrati-Kalbibaki M, Fattahi M, Lezsovits F (2020) Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent. Energy 211:119035. https://doi.org/10.1016/j.energy.2020.119035 Ibili H, Dasdemir M (2019) Investigation of electrohydrodynamic atomization (electrospraying) parameters’ effect on formation of poly (lactic acid) nanoparticles. J Mater Sci 54:14609–14623. https://doi.org/10.1007/s10853-019-03899-6 IEA—International Energy Agency (2019) Global energy review 2019. https://www.iea.org/reports/global-energy-review-2019. Accessed 18 Sept 2020 Ikedi CU (2018) Economic impact of CO2 mitigation devices in sustainable buildings. In: Silva V (ed) Low carbon transition: technical, economic and policy assessment. IntechOpen, London, pp 73–88 Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98 Kannan K, Radhika D, Sadasivuni KK, Reddy KR, Raghu AV (2020a) Nanostructured metal oxides and its hybrids for biomedical applications. Adv Colloid Interface Sci 281:102178. https://doi.org/10.1016/j.cis.2020.102178 Kannan K, Radhika D, Vijayalakshmi S, Sadasivuni KK, Ojiaku AA, Verma U (2020b) Facile fabrication of CuO nanoparticles via microwave-assisted method: photocatalytic, antimicrobial and anticâncer enhancing performance. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1733543 Kannan K, Sliem MH, Abdullah AM, Sadasivuni KK, Kumar B (2020c) Fabrication of ZnO–Fe-MXene based nanocomposites for efficient CO2 reduction. Catalysts 10(5):549. https://doi.org/10.3390/catal10050549 Karpagam R, Jawaharraj K, Gnanam R (2021) Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy. Sci Total Environ 766:144236. https://doi.org/10.1016/j.scitotenv.2020.144236 Kassim MA, Meng TK (2017) Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Sci Total Environ 584:1121–1129. https://doi.org/10.1016/j.scitotenv.2017.01.172 Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931. https://doi.org/10.1016/j.arabjc.2017.05.011 Koronaki IP, Prentza L, Papaefthimiou V (2015) Modeling of CO2 capture via chemical absorption processes—an extensive literature review. Renew Sustain Energy Rev 50:547–566. https://doi.org/10.1016/j.rser.2015.04.124 Lambreva MD, Lavecchia T, Tyystjärvi E, Antal TK, Orlanducci S, Margonelli A, Rea G (2015) Potential of carbon nanotubes in algal biotechnology. Photosynth Res 125:451–471. https://doi.org/10.1007/s11120-015-0168-z Li S, Pyrzynski TJ, Klinghoffer NB, Tamale T, Zhong Y, Aderhold JL, James Zhou S, Meyer HS, Ding Y, Bikson B (2017) Scale-up of PEEK hollow fiber membrane contactor for post-combustion CO2 capture. J Membr Sci 527:92–101. https://doi.org/10.1016/j.memsci.2017.01.014 Lu C, Shi X, Liu Y, Xiao H, Li J, Chen X (2021) Nanomaterials for adsorption and conversion of CO2 under gentle conditions. Mater Today. https://doi.org/10.1016/j.mattod.2021.03.016 Luis P (2016) Use of monoethanolamine (MEA) for CO2 capture in a global scenario: consequences and alternatives. Desalination 380:93–99. https://doi.org/10.1016/j.desal.2015.08.004 Mansour BR, Habib MA, Bamidele OE, Basha M, Qasem NAA, Peedikakkal A, Laoui T, Ali M (2016) Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations—a review. Appl Energy 161:225–255. https://doi.org/10.1016/j.apenergy.2015.10.011 Masjedi-Arani M, Ghiyasiyan-Arani M, Amiri O, Salavati-Niasari M (2020) CdSnO3-graphene nanocomposites: ultrasonic synthesis using glucose as capping agent and characterization for electrochemical hydrogen storage. Ultrason Sonochem 61:104840. https://doi.org/10.1016/j.ultsonch.2019.104840 Meng F, Jiang Y, Sun Z, Yin Y, Li Y (2009) Electrohydrodynamic liquid atomization of biodegradable polymer microparticles: effect of electrohydrodynamic liquid atomization variables on microparticles. J App Polym Sci 113:526–534. https://doi.org/10.1002/app.30107 Modena MM, Rühle B, Burg TP, Wuttke S (2019) Nanoparticle characterization: what to measure? Adv Mater. https://doi.org/10.1002/adma.201901556 Mohanraj VJ, Chen Y (2006) Nanoparticles—a review. Trop J Pharm Res 113:526–534. https://doi.org/10.4314/tjpr.v5i1.14634 Monsef R, Ghiyasiyan-Arani M, Amiri O, Salavati-Niasari M (2020) Sonochemical synthesis, characterization and application of PrVO4 nanostructures as an effective photocatalyst for discoloration of organic dye contaminants in wastewater. Ultrason Sonochem 61:104822. https://doi.org/10.1016/j.ultsonch.2019.104822 Moraes L, Rosa GM, Santos LO, Costa JA (2020) Innovative development of membrane sparger for carbon dioxide supply in microalgae cultures. Biotechnol Prog 36(4):e2987. https://doi.org/10.1002/btpr.2987 Morais MG, Morais EG, Vaz BS, Gonçalves CF, Lisboa C, Costa JAV (2016) Nanoencapsulation of the bioactive compounds of Spirulina with a microalgal biopolymer coating. J Nanosci Nanotechnol 16:81–91. https://doi.org/10.1166/jnn.2016.10899 Morais EG, Cassuriaga APA, Callejas N, Martinez N, Vieitez I, Jachmanián I, Santos LO, Morais MG, Costa JAV (2018) Evaluation of CO2 biofixation and biodiesel production by Spirulina (Arthospira) cultivated in air-lift photobioreactor. Braz Arch Biol Technol 61:e18161339. https://doi.org/10.1590/1678-4324-2018161339 Morais MG, Morais EG, Duarte JH, Deamici KM, Mitchell BG, Costa JAV (2019) Biological CO2 mitigation by microalgae: technological trends, future prospects and challenges. World J Microbiol Biotechnol 35(5):1–7 Mourdikoudis S, Pallares RM, Thanh NT (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10:12871–12934. https://doi.org/10.1039/C8NR02278J Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33. https://doi.org/10.1016/j.desal.2010.11.033 Nguyen MK, Moon JY, Bui VKH, Oh YK, Lee YC (2019) Recent advanced applications of nanomaterials in microalgae biorefinery. Algal Res 41:101522. https://doi.org/10.1016/j.algal.2019.101522 Niu B, Shao P, Luo Y, Sun P (2020) Recent advances of electrosprayed particles as encapsulation systems of bioactives for food application. Food Hydrocoll 99:105376. https://doi.org/10.1016/j.foodhyd.2019.105376 Nocito F, Dibenedetto A (2020) Atmospheric CO2 mitigation technologies: carbon capture utilization and storage. Curr Opin Green Sustain Chem 21:34–43. https://doi.org/10.1016/j.cogsc.2019.10.002 Parhi R, Suresh P (2012) Preparation and characterization of solid lipid nanoparticles—a review. Curr Drug Discov Technol 9:2–16. https://doi.org/10.2174/157016312799304552 Paris JL, Vallet-Regí M (2018) Nanostructures for imaging, medical diagnostics and therapy. In: Barhoum A, Makhlouf ASH (eds) Fundamentals of nanoparticles: classifications, synthesis methods, properties and characterization. Elsevier, Amsterdam, pp 1–28 Park CH, Lee J (2009) Electrosprayed polymer particles: effect of the solvent properties. J Appl Polym Sci 114:430–437. https://doi.org/10.1002/app.30498 Pattanayak DS, Pal D, Thakur C, Kumar S, Devnani GL (2021) Bio-synthesis of iron nanoparticles for environmental remediation: status till date. Mater Today 44:3150–3155. https://doi.org/10.1016/j.matpr.2021.02.821 Petrík S (2011) Industrial production technology for nanofibers. Nanofibers–production, properties and functional applications. In: Lin T (ed) Nanofibers: production, properties and functional applications. IntechOpen, London, pp 3–16 Rangayasami A, Kannan K, Joshi S, Subban M (2020) Bioengineered silver nanoparticles using Elytraria acaulis (L.f.) Lindau leaf extract and its biological applications. Biocatal Agric Biotechnol 27:101690. https://doi.org/10.1016/j.bcab.2020.101690 Rodas-Zuluaga LI, Castañeda-Hernández L, Castillo-Vacas EI, Gradiz-Menjivar A, López-Pacheco IY, Castillo-Zacarías C, Boully L, Iqbal HMN, Parra-Saldívar R (2021) Bio-capture and influence of CO2 on the growth rate and biomass composition of the microalgae Botryococcus braunii and Scenedesmus sp. J CO2 Util 43:101371. https://doi.org/10.1016/j.jcou.2020.101371 Rosa GM, Morais MG, Costa JAV (2019) Fed-batch cultivation with CO2 and monoethanolamine: influence on Chlorella fusca LEB 111 cultivation, carbon biofixation and biomolecules production. Bioresour Technol 273:627–633. https://doi.org/10.1016/j.biortech.2018.11.010 Rostamabadi H, Falsafi SR, Rostamabadi MM, Assadpour E, Jafari SM (2021) Electrospraying as a novel process for the synthesis of particles/nanoparticles loaded with poorly water-soluble bioactive molecules. Adv Colloid Interface Sci 290:102384. https://doi.org/10.1016/j.cis.2021.102384 Saka C (2021) Oxygen and nitrogen-doped metal-free microalgae carbon nanoparticles for efficient hydrogen production from sodium borohydride in methanol. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2021.05.111 Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL (2011) Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem 83:4453–4488. https://doi.org/10.1021/ac200853a Sudagidan M, Yildiz G, Onen S, Al R, Temiz ŞN, Yurt MNZ, Tasbasi BB, Acar EE, Coban A, Aydin A, Dursun AD, Ozalp VC (2021) Targeted mesoporous silica nanoparticles for improved inhibition of disinfectant resistant listeria monocytogenes and lower environmental pollution. J Hazard Mater 418:126364. https://doi.org/10.1016/j.jhazmat.2021.126364 Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 102(3):3071–3076. https://doi.org/10.1016/j.biortech.2010.10.047 Turan NB, Erkan HS, Engin GO, Bilgili MS (2019) Nanoparticles in the aquatic environment: usage, properties, transformation and toxicity—a review. Process Saf Environ 130:238–249. https://doi.org/10.1016/j.psep.2019.08.014 Vaz BS, Costa JAV, Morais MG (2019a) Innovative nanofiber technology to improve carbon dioxide biofixation in microalgae cultivation. Bioresour Technol 273:592–598. https://doi.org/10.1016/j.biortech.2018.11.054 Vaz BS, Mastrantonio DJS, Costa JAV, Morais MG (2019b) Green alga cultivation with nanofibers as physical adsorbents of carbon dioxide: evaluation of gas biofixation and macromolecule production. Bioresour Technol 287:121406. https://doi.org/10.1016/j.biortech.2019.121406 Vaz BS, Costa JAV, Morais MG (2020) Physical and biological fixation of CO2 with polymeric nanofibers in outdoor cultivations of Chlorella fusca LEB 111. Int J Biol Macromol 151:1332–1339. https://doi.org/10.1016/j.ijbiomac.2019.10.179 Wahiduzzaman AK, Stone J, Harp S, Mujibur K (2017) Synthesis and electrospraying of nanoscale MOF (metal organic framework) for high-performance CO2 adsorption membrane. Nanoscale Res Lett 12(6):1–12. https://doi.org/10.1186/s11671-016-1798-6 Xu D (2018) Carbon nanotubes (CNTs) composite materials and food packaging. Compos Mater Food Packag. https://doi.org/10.1002/9781119160243.ch7 Zainab G, Babar AA, Iqbal N, Wang X, Yu J, Ding B (2018) Amine-impregnated porous nanofiber membranes for CO2 capture. Compos Commun 10:45–51. https://doi.org/10.1016/j.coco.2018.06.005 Zhang Y, Guan J, Wang X, Yu J, Ding B (2017) Balsam-pear-skin-like porous polyacrylonitrile nanofibrous membranes grafted with polyethyleneimine for postcombustion CO2 capture. ACS Appl Mater Interfaces 9:41087–41098. https://doi.org/10.1021/acsami.7b14635 Zhang W, Deng Z, Wang Q, Li J, Qiu X (2021) Experimental research on chemical desorption based on CO2-rich absorption solutions. Int J Greenh Gas Con 109:103356. https://doi.org/10.1016/j.ijggc.2021.103356