Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Những tiến bộ trong nghiên cứu tiến hóa có định hướng cho cellulase
Tóm tắt
Nếu cellulose có thể được thủy phân hiệu quả thành glucose bởi cellulase, thì chi phí sản xuất hydro, ethanol hoặc các hóa chất khác từ các vật liệu cellulose sẽ giảm đáng kể, và sản xuất biohydrogen và bioethanol có lãi sẽ trở nên khả thi. Cellulose được phân hủy thành glucose bởi các hệ thống enzyme đa thành phần. Ngày nay, cellulase được sử dụng rộng rãi trong ngành bia, thực phẩm, năng lượng sinh học, thức ăn chăn nuôi, dệt may, giấy, dược phẩm, bảo vệ môi trường và các ngành khác. Tuy nhiên, cellulase hiện có gặp một số vấn đề hạn chế khả năng ứng dụng rộng rãi của chúng, bao gồm số vòng quay thấp cho các vật liệu cellulose rắn và độ ổn định thấp khi thích ứng với nhiều điều kiện ứng dụng khác nhau như nhiệt độ cao, độ pH thấp, v.v. Ứng dụng công nghệ tiến hóa có định hướng có thể là một trong những cách hiệu quả nhất để cải thiện các đặc tính của cellulase. Bài báo này trình bày một cái nhìn tổng quan ngắn gọn về cơ chế thủy phân cellulase bởi cellulase, những tiến bộ trong việc cải thiện cellulase (endoglucanase và β-glucosidase) thông qua tiến hóa có định hướng cho một số đặc tính (ví dụ, độ ổn định nhiệt, khả năng thích ứng với độ pH và hoạt tính enzyme), những hạn chế của tiến hóa có định hướng cho cellulase, và triển vọng cho tiến hóa có định hướng đối với cellulase.
Từ khóa
#cellulase #thủy phân #tiến hóa có định hướng #tính chất enzyme #biohydrogen #bioethanolTài liệu tham khảo
Hammerschlag R. Ethanol’s energy return on the investment: a survey of the literature 1990-present. Environmental Science & Technology, 2006, 40(6): 1744–1750
Lynd L R, Laser MS, Bransby D, Dale B E, Davison B, Hamilton R, Himmel M, Keller M, McMillan J D, Sheehan J, Wyman C E. How biotech can transform biofuels. Nature Biotechnology, 2008, 26(2): 169–172
Alriksson B, Rose S H, van Zyl W H, Sjode A, Nilvebrant N O, Jonsson L J. Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger. Applied and Environmental Microbiology, 2009, 75(8): 2366–2374
Vrije T, Bakker R R, Budde M A W, Lai MH, Mars A E, Claassen P AM. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnology for Biofuels, 2009, 2(1): 12–26
Dashtban M, Schraft H, Qin W S. Fungal bioconversion of lignocellulosic residues: opportunities & perspectives. International Journal of Biological Sciences, 2009, 5(6): 578–595
Maki M, Leung K T, Qin W S. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. International Journal of Biological Sciences, 2009, 5(5): 500–516
Hu L Y, Zhong W H. Advances of the research on gene cloning and functional amino-acid of cellulose. Biotechnology China, 2003, 13(2): 43–45 (in Chinese)
Taherzadeh M J, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences, 2008, 9(9): 1621–1651
Lynd L R, Weimer P J, van Zyl W H, Pretorius I S. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 2002, 66(3): 506–577
Demain A L, Newcomb M, Wu J H D. Cellulase, clostridia, and ethanol. Microbiology and Molecular Biology Reviews, 2005, 69(1): 124–154
Yu X L, Wang L, Xu W M. Progress in the studies of cellulose degradation by cellulase. Journal of Ningbo University, 2007, 20(1): 78–82 (in Chinese)
Eijsink V G H, Gåseidnes S, Borchert T V, van den Burg B. Directed evolution of enzyme stability. Biomolecular Engineering, 2005, 22(1–3): 21–30
Hibbert E G, Dalby P A. Directed evolution strategies for improved enzymatic performance. Microbial Cell Factories, 2005, 4(1): 29–34
Liu Y, Zhang H F, Sun Z. Advance in molecular biology and gene engineer of cellulase. Feed industry China, 2007, 28(18): 11–14 (in Chinese)
Murashima K, Kosugi A, Doi R H. Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with non-cellulosomal endoglucanase EngD. Molecular Microbiology, 2002, 45(3): 617–626
Kim Y S, Jung H C, Pan J G. Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Applied and Environmental Microbiology, 2000, 66(2): 788–793
Catcheside D E A, Rasmussen J P, Yeadon P J, Bowing F J, Cambareri E B, Kato E, Gabe J, Stuart W D. Diversification of exogenous genes in vivo in Neurospora. Applied and Environmental Microbiology, 2003, 62: 544–549
Lebbink J H, Kaper T, Bron P, van der Oost J, de Vos W M. Improving low-temperature catalysis in the hyperthermostable Pyrococcus furiosus beta-glucosidase CelB by directed evolution. Biochemistry, 2000, 39(13): 3656–3665
Kaper T, Brouns S J J, Geerling A C M, de Vos WM, van der OOST J. DNA family shuffling of hyperthermostable beta-glycosidases. Biochemical Journal, 2002, 368(2): 461–470
Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P, Wang T. Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomolecular Engineering, 2005, 22(1–3): 89–94
González-Blasco G, Sanz-Aparicio J, González B, Hermoso J A, Polaina J. Directed evolution of beta-glucosidase A from Paenibacillus polymyxa to thermal resistance. Journal of Biological Chemistry, 2000, 275(18): 13708–13712
McCarthy J K, Uzelac A, Davis D F, Eveleigh D E. Improved catalytic efficiency and active site modification of 1,4-beta-D-glucan glucohydrolase A from Thermotoga neapolitana by directed evolution. Journal of Biological Chemistry, 2004, 279(12): 11495–11502
Kim Y W, Lee S S, Warren R A, Withers S G. Directed evolution of a glycosynthase from Agrobacterium sp. increases its catalytic activity dramatically and expands its substrate repertoire. Journal of Biological Chemistry, 2004, 279(41): 42787–42793
Nakazawa H, Okada K, Onodera T, Ogasawara W, Okada H, Morikawa Y. Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei. Applied Microbiology and Biotechnology, 2009, 83(4): 649–657
Xiao Z Z, Wang P, Qu Y B, Gao P J, Wang T H. Cold adaptation of a mesophilic cellulase, EG III from Trichoderma reesei, by directed evolution. Science in China. Series C, Life Sciences, 2002, 45(4): 337–343
Qin Y Q, Wei X M, Song X, Qu Y B. Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. Journal of Biotechnology, 2009, 135(2): 190–195
Arrizubieta M J, Polaina J. Increased thermal resistance and modification of the catalytic properties of a beta-glucosidase by random mutagenesis and in vitro recombination. Journal of Biological Chemistry, 2000, 275(37): 28843–28848
Lin L, Meng X, Liu P F, Hong Y Z, Wu G B, Huang X L, Li C C, Dong J L, Xiao L, Liu Z. Improved catalytic efficiency of Endo-β-1, 4-glucanase from Bacillus subtilis BME-15 by directed evolution. Applied Microbiology and Biotechnology, 2009, 82(4): 671–679
Heinzelman P, Komor R, Kanaan A, Romero P, Yu X L, Mohler S, Snow C, Arnold F. Efficient screening of fungal cellobiohydrolase classIenzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination. Protein Engineering, Design & Selection, 2010, 23(11): 871–880
Heinzelman P, Snow C D, Smith M A, Yu X L, Kannan A, Boulware K, Villalobos A, Govindarajan S, Minshull J, Arnold F H. SCHEMA recombination of a fungal cellulaseuncovers a single mutation that contributes markedly to stability. Journal of Biological Chemistry, 2009, 284(39): 26229–26233
Zhang X Y. Studies on the directed evolution and thermostability of β-glucanase. Dissertation for Doctoral Degree. Hangzhou: Zhejiang University, 2006, 64–94 (in Chinese)
Qin Y Q. Protein engineering and expression of the endoglucanase II from Trichoderma reesei. Dissertation for Doctoral Degree. Jinan: Shandong University, 2008: 71–101 (in Chinese)
Hardiman E, Gibbs M, Reeves R, Bergquist P. Directed evolution of a thermophilic β-glucosidase for cellulosic bioethanol production. Applied Biochemistry Biotechnology, 2010 161(1–8):301–312
Zhao L G, Meng P, Li L J, Yu S Y. Detection and identification of β-glucosidase with esculin as substrste. Food and Fermentation Industries, 2008, 34(12): 163–166 (in Chinese)
Liu W, Hong J, Bevan D R, Zhang Y H P. Fast identification of thermostable beta-glucosidase mutants on cellobiose by a novel combinatorial selection/screening approach. Biotechnology and Bioengineering, 2009, 103(6): 1087–1094
Dashtban M, Maki M, Leung K T, Mao C Q, Qin W S. Cellulase activities in biomass conversion: measurement methods and comparison. Critical Reviews in Biotechnology, 2010, 30(4): 302–309
Sen S, Dasu D V, Mandal B. Developments in directed evolution for improving enzyme functions. Applied Biochemistry and Biotechnology, 2007, 143(3): 212–223
Percivalzhang Y, Himmel M, Mielenz J. Outlook for cellulase improvement: screening and selection strategies. Biotechnology Advances, 2006, 24(5): 452–481
Nakazawa H, Okada K, Kobayashi R, Kubota T, Onodera T, Ochiai N, Omata N, Ogasawara W, Okada H, Morikawa Y. Characterization of the catalytic domains of Trichoderma reesei endoglucanase I, II and III, expressed in Escherichia coli. Applied Microbiology and Biotechnology, 2008, 81(4): 681–689