Những tiến bộ trong nghiên cứu tiến hóa có định hướng cho cellulase

Hailong Lin1,2, Weiguang Li1, Changhong Guo2, Sihang Qu2, Nanqi Ren1
1State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
2College of Life Science and Technology, Harbin Normal University, Harbin, China

Tóm tắt

Nếu cellulose có thể được thủy phân hiệu quả thành glucose bởi cellulase, thì chi phí sản xuất hydro, ethanol hoặc các hóa chất khác từ các vật liệu cellulose sẽ giảm đáng kể, và sản xuất biohydrogen và bioethanol có lãi sẽ trở nên khả thi. Cellulose được phân hủy thành glucose bởi các hệ thống enzyme đa thành phần. Ngày nay, cellulase được sử dụng rộng rãi trong ngành bia, thực phẩm, năng lượng sinh học, thức ăn chăn nuôi, dệt may, giấy, dược phẩm, bảo vệ môi trường và các ngành khác. Tuy nhiên, cellulase hiện có gặp một số vấn đề hạn chế khả năng ứng dụng rộng rãi của chúng, bao gồm số vòng quay thấp cho các vật liệu cellulose rắn và độ ổn định thấp khi thích ứng với nhiều điều kiện ứng dụng khác nhau như nhiệt độ cao, độ pH thấp, v.v. Ứng dụng công nghệ tiến hóa có định hướng có thể là một trong những cách hiệu quả nhất để cải thiện các đặc tính của cellulase. Bài báo này trình bày một cái nhìn tổng quan ngắn gọn về cơ chế thủy phân cellulase bởi cellulase, những tiến bộ trong việc cải thiện cellulase (endoglucanase và β-glucosidase) thông qua tiến hóa có định hướng cho một số đặc tính (ví dụ, độ ổn định nhiệt, khả năng thích ứng với độ pH và hoạt tính enzyme), những hạn chế của tiến hóa có định hướng cho cellulase, và triển vọng cho tiến hóa có định hướng đối với cellulase.

Từ khóa

#cellulase #thủy phân #tiến hóa có định hướng #tính chất enzyme #biohydrogen #bioethanol

Tài liệu tham khảo

Hammerschlag R. Ethanol’s energy return on the investment: a survey of the literature 1990-present. Environmental Science & Technology, 2006, 40(6): 1744–1750 Lynd L R, Laser MS, Bransby D, Dale B E, Davison B, Hamilton R, Himmel M, Keller M, McMillan J D, Sheehan J, Wyman C E. How biotech can transform biofuels. Nature Biotechnology, 2008, 26(2): 169–172 Alriksson B, Rose S H, van Zyl W H, Sjode A, Nilvebrant N O, Jonsson L J. Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger. Applied and Environmental Microbiology, 2009, 75(8): 2366–2374 Vrije T, Bakker R R, Budde M A W, Lai MH, Mars A E, Claassen P AM. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnology for Biofuels, 2009, 2(1): 12–26 Dashtban M, Schraft H, Qin W S. Fungal bioconversion of lignocellulosic residues: opportunities & perspectives. International Journal of Biological Sciences, 2009, 5(6): 578–595 Maki M, Leung K T, Qin W S. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. International Journal of Biological Sciences, 2009, 5(5): 500–516 Hu L Y, Zhong W H. Advances of the research on gene cloning and functional amino-acid of cellulose. Biotechnology China, 2003, 13(2): 43–45 (in Chinese) Taherzadeh M J, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences, 2008, 9(9): 1621–1651 Lynd L R, Weimer P J, van Zyl W H, Pretorius I S. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 2002, 66(3): 506–577 Demain A L, Newcomb M, Wu J H D. Cellulase, clostridia, and ethanol. Microbiology and Molecular Biology Reviews, 2005, 69(1): 124–154 Yu X L, Wang L, Xu W M. Progress in the studies of cellulose degradation by cellulase. Journal of Ningbo University, 2007, 20(1): 78–82 (in Chinese) Eijsink V G H, Gåseidnes S, Borchert T V, van den Burg B. Directed evolution of enzyme stability. Biomolecular Engineering, 2005, 22(1–3): 21–30 Hibbert E G, Dalby P A. Directed evolution strategies for improved enzymatic performance. Microbial Cell Factories, 2005, 4(1): 29–34 Liu Y, Zhang H F, Sun Z. Advance in molecular biology and gene engineer of cellulase. Feed industry China, 2007, 28(18): 11–14 (in Chinese) Murashima K, Kosugi A, Doi R H. Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with non-cellulosomal endoglucanase EngD. Molecular Microbiology, 2002, 45(3): 617–626 Kim Y S, Jung H C, Pan J G. Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Applied and Environmental Microbiology, 2000, 66(2): 788–793 Catcheside D E A, Rasmussen J P, Yeadon P J, Bowing F J, Cambareri E B, Kato E, Gabe J, Stuart W D. Diversification of exogenous genes in vivo in Neurospora. Applied and Environmental Microbiology, 2003, 62: 544–549 Lebbink J H, Kaper T, Bron P, van der Oost J, de Vos W M. Improving low-temperature catalysis in the hyperthermostable Pyrococcus furiosus beta-glucosidase CelB by directed evolution. Biochemistry, 2000, 39(13): 3656–3665 Kaper T, Brouns S J J, Geerling A C M, de Vos WM, van der OOST J. DNA family shuffling of hyperthermostable beta-glycosidases. Biochemical Journal, 2002, 368(2): 461–470 Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P, Wang T. Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomolecular Engineering, 2005, 22(1–3): 89–94 González-Blasco G, Sanz-Aparicio J, González B, Hermoso J A, Polaina J. Directed evolution of beta-glucosidase A from Paenibacillus polymyxa to thermal resistance. Journal of Biological Chemistry, 2000, 275(18): 13708–13712 McCarthy J K, Uzelac A, Davis D F, Eveleigh D E. Improved catalytic efficiency and active site modification of 1,4-beta-D-glucan glucohydrolase A from Thermotoga neapolitana by directed evolution. Journal of Biological Chemistry, 2004, 279(12): 11495–11502 Kim Y W, Lee S S, Warren R A, Withers S G. Directed evolution of a glycosynthase from Agrobacterium sp. increases its catalytic activity dramatically and expands its substrate repertoire. Journal of Biological Chemistry, 2004, 279(41): 42787–42793 Nakazawa H, Okada K, Onodera T, Ogasawara W, Okada H, Morikawa Y. Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei. Applied Microbiology and Biotechnology, 2009, 83(4): 649–657 Xiao Z Z, Wang P, Qu Y B, Gao P J, Wang T H. Cold adaptation of a mesophilic cellulase, EG III from Trichoderma reesei, by directed evolution. Science in China. Series C, Life Sciences, 2002, 45(4): 337–343 Qin Y Q, Wei X M, Song X, Qu Y B. Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. Journal of Biotechnology, 2009, 135(2): 190–195 Arrizubieta M J, Polaina J. Increased thermal resistance and modification of the catalytic properties of a beta-glucosidase by random mutagenesis and in vitro recombination. Journal of Biological Chemistry, 2000, 275(37): 28843–28848 Lin L, Meng X, Liu P F, Hong Y Z, Wu G B, Huang X L, Li C C, Dong J L, Xiao L, Liu Z. Improved catalytic efficiency of Endo-β-1, 4-glucanase from Bacillus subtilis BME-15 by directed evolution. Applied Microbiology and Biotechnology, 2009, 82(4): 671–679 Heinzelman P, Komor R, Kanaan A, Romero P, Yu X L, Mohler S, Snow C, Arnold F. Efficient screening of fungal cellobiohydrolase classIenzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination. Protein Engineering, Design & Selection, 2010, 23(11): 871–880 Heinzelman P, Snow C D, Smith M A, Yu X L, Kannan A, Boulware K, Villalobos A, Govindarajan S, Minshull J, Arnold F H. SCHEMA recombination of a fungal cellulaseuncovers a single mutation that contributes markedly to stability. Journal of Biological Chemistry, 2009, 284(39): 26229–26233 Zhang X Y. Studies on the directed evolution and thermostability of β-glucanase. Dissertation for Doctoral Degree. Hangzhou: Zhejiang University, 2006, 64–94 (in Chinese) Qin Y Q. Protein engineering and expression of the endoglucanase II from Trichoderma reesei. Dissertation for Doctoral Degree. Jinan: Shandong University, 2008: 71–101 (in Chinese) Hardiman E, Gibbs M, Reeves R, Bergquist P. Directed evolution of a thermophilic β-glucosidase for cellulosic bioethanol production. Applied Biochemistry Biotechnology, 2010 161(1–8):301–312 Zhao L G, Meng P, Li L J, Yu S Y. Detection and identification of β-glucosidase with esculin as substrste. Food and Fermentation Industries, 2008, 34(12): 163–166 (in Chinese) Liu W, Hong J, Bevan D R, Zhang Y H P. Fast identification of thermostable beta-glucosidase mutants on cellobiose by a novel combinatorial selection/screening approach. Biotechnology and Bioengineering, 2009, 103(6): 1087–1094 Dashtban M, Maki M, Leung K T, Mao C Q, Qin W S. Cellulase activities in biomass conversion: measurement methods and comparison. Critical Reviews in Biotechnology, 2010, 30(4): 302–309 Sen S, Dasu D V, Mandal B. Developments in directed evolution for improving enzyme functions. Applied Biochemistry and Biotechnology, 2007, 143(3): 212–223 Percivalzhang Y, Himmel M, Mielenz J. Outlook for cellulase improvement: screening and selection strategies. Biotechnology Advances, 2006, 24(5): 452–481 Nakazawa H, Okada K, Kobayashi R, Kubota T, Onodera T, Ochiai N, Omata N, Ogasawara W, Okada H, Morikawa Y. Characterization of the catalytic domains of Trichoderma reesei endoglucanase I, II and III, expressed in Escherichia coli. Applied Microbiology and Biotechnology, 2008, 81(4): 681–689