Advances in the physiology of primary visual cortex in primates

Current Opinion in Physiology - Tập 16 - Trang 79-84 - 2020
Michael J Hawken1
1Center for Neural Science, New York University, New York, NY 10003 USA

Tài liệu tham khảo

Priebe, 2016, Mechanisms of orientation selectivity in the primary visual cortex, Annu Rev Vis Sci, 2, 85, 10.1146/annurev-vision-111815-114456 Angelucci, 2017, Circuits and mechanisms for surround modulation in visual cortex, Annu Rev Neurosci, 40, 425, 10.1146/annurev-neuro-072116-031418 Seidemann, 2018, Linking V1 activity to behavior, Annu Rev Vis Sci, 4, 287, 10.1146/annurev-vision-102016-061324 Yuille, 2006, Vision as Bayesian inference: analysis by synthesis?, Trends Cogn Sci, 10, 301, 10.1016/j.tics.2006.05.002 Hubel, 1962, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, J Physiol, 160, 106, 10.1113/jphysiol.1962.sp006837 Hubel, 1968, Receptive fields and functional architecture of monkey striate cortex, J Physiol, 195, 215, 10.1113/jphysiol.1968.sp008455 Allman, 1985, Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons, Annu Rev Neurosci, 8, 407, 10.1146/annurev.ne.08.030185.002203 Sadagopan, 2012, Feedforward origins of response variability underlying contrast invariant orientation tuning in cat visual cortex, Neuron, 74, 911, 10.1016/j.neuron.2012.05.007 Sedigh-Sarvestani, 2017, Intracellular, in vivo, dynamics of thalamocortical synapses in visual cortex, J Neurosci, 37, 5250, 10.1523/JNEUROSCI.3370-16.2017 Sedigh-Sarvestani, 2019, Thalamocortical synapses in the cat visual system in vivo are weak and unreliable, eLife, 8, 10.7554/eLife.41925 Garcia-Marin, 2019, Major feedforward thalamic input into layer 4C of primary visual cortex in primate, Cereb Cortex, 29, 134, 10.1093/cercor/bhx311 Hendrickson, 1978, The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and the visual cortex in old and new world primates, J Comp Neurol, 182, 123, 10.1002/cne.901820108 Chariker, 2016, Orientation selectivity from very sparse LGN inputs in a comprehensive model of macaque V1 cortex, J Neurosci, 36, 12368, 10.1523/JNEUROSCI.2603-16.2016 Chariker, 2018, Rhythm and synchrony in a cortical network model, J Neurosci, 38, 8621, 10.1523/JNEUROSCI.0675-18.2018 Benvenuti, 2018, Scale-invariant visual capabilities explained by topographic representations of luminance and texture in primate V1, Neuron, 100, 1504, 10.1016/j.neuron.2018.10.020 Cumming, 1997, Responses of primary visual cortical neurons to binocular disparity without depth perception, Nature, 389, 280, 10.1038/38487 Fujita, 2016, Weighted parallel contributions of binocular correlation and match signals to conscious perception of depth, Phil Trans R Soc B, 371, 20150257, 10.1098/rstb.2015.0257 Henriksen, 2016, Neurons in striate cortex signal disparity in half-matched random-dot stereograms, J Neurosci, 36, 8967, 10.1523/JNEUROSCI.0642-16.2016 Dougherty, 2019, Binocular modulation of monocular V1 neurons, Curr Biol, 29, 381, 10.1016/j.cub.2018.12.004 Michel, 2018, Nonlinear lateral interactions in V1 population responses explained by a contrast gain control model, J Neurosci, 38, 10069, 10.1523/JNEUROSCI.0246-18.2018 Nurminen, 2018, Top-down feedback controls spatial summation and response amplitude in primate visual cortex, Nat Commun, 9, 2281, 10.1038/s41467-018-04500-5 Bijanzadeh, 2018, Distinct laminar processing of local and global context in primate primary visual cortex, Neuron, 100, 259, 10.1016/j.neuron.2018.08.020 Freeman, 2013, A functional and perceptual signature of the second visual area in primates, Nat Neurosci, 16, 974, 10.1038/nn.3402 Ziemba, 2019, Laminar differences in responses to naturalistic texture in macaque V1 and V2, J Neurosci, 39, 9748, 10.1523/JNEUROSCI.1743-19.2019 Tang, 2018, Complex pattern selectivity in macaque primary visual cortex revealed by large-scale two-photon imaging, Curr Biol, 28, 38, 10.1016/j.cub.2017.11.039 Tang, 2018, Large-scale two-photon imaging revealed super-sparse population codes in the V1 superficial layer of awake monkeys, Elife, 7, 10.7554/eLife.33370 Zhang, 2019, Convolutional neural network models of V1 responses to complex patterns, J Comput Neurosci, 46, 33, 10.1007/s10827-018-0687-7 Michelson, 2017, Majority of choice-related variability in perceptual decisions is present in early sensory cortex, bioRxiv Rosenbaum, 2017, The spatial structure of correlated neuronal variability, Nat Neurosci, 20, 107, 10.1038/nn.4433 Bondy, 2018, Feedback determines the structure of correlated variability in primary visual cortex, Nat Neurosci, 21, 598, 10.1038/s41593-018-0089-1 Goris, 2017, Dissociation of choice formation and choice-correlated activity in macaque visual cortex, J Neurosci, 37, 5195, 10.1523/JNEUROSCI.3331-16.2017 Bányai, 2019, Stimulus complexity shapes response correlations in primary visual cortex, PNAS, 116, 2723, 10.1073/pnas.1816766116 Cadena, 2019, Deep convolutional models improve predictions of macaque V1 responses to natural images, PLoS Comput Biol, 15, e1006897, 10.1371/journal.pcbi.1006897 Barczak, 2019, Dynamic modulation of cortical excitability during visual active sensing, Cell Rep, 27, 3447, 10.1016/j.celrep.2019.05.072 Gutnisky, 2017, Spontaneous fluctuations in visual cortical responses influence population coding accuracy, Cereb Cortex, 27, 1409, 10.1093/cercor/bhv312 Motter, 1993, Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli, J Neurophysiol, 70, 909, 10.1152/jn.1993.70.3.909 McAdams, 2005, Attention modulates the responses of simple cells in monkey primary visual cortex, J Neurosci, 25, 11023, 10.1523/JNEUROSCI.2904-05.2005 Mock, 2018, Dynamic communication of attention signals between the LGN and V1, J Neurophysiol, 120, 1625, 10.1152/jn.00224.2018 Cox, 2019, Spiking suppression precedes cued attentional enhancement of neural responses in primary visual cortex, Cereb Cortex, 29, 77, 10.1093/cercor/bhx305 Hembrook-Short, 2017, Attentional modulation of neuronal activity depends on neuronal feature selectivity, Curr Biol, 27, 1878, 10.1016/j.cub.2017.05.080 Hembrook-Short, 2019, Attention enhances the efficacy of communication in V1 local circuits, J Neurosci, 39, 1066, 10.1523/JNEUROSCI.2164-18.2018 Seidemann, 2016, Calcium imaging with genetically encoded indicators in behaving primates, eLife, 5, 1, 10.7554/eLife.16178 Aschner, 2018, Temporal contingencies determine whether adaptation strengthens or weakens normalization, J Neurosci, 38, 10129, 10.1523/JNEUROSCI.1131-18.2018 Shimegi, 2016, Cholinergic and serotonergic modulation of visual information processing in monkey V1, J Physiol Paris, 110, 44, 10.1016/j.jphysparis.2016.09.001 Coppola, 2018, Is there a canonical cortical circuit for the cholinergic system? Anatomical differences across common model systems, Front Neural Circuits, 12, 8, 10.3389/fncir.2018.00008 Thiele, 2018, Neuromodulation of attention, Neuron, 97, 769, 10.1016/j.neuron.2018.01.008 Krueger, 2019, Structure and function of dual-source cholinergic modulation in early vision, J Comp Neurol, 527, 738, 10.1002/cne.24590 Disney, 2007, Gain modulation by nicotine in macaque v1, Neuron, 56, 701, 10.1016/j.neuron.2007.09.034 Zaldivar, 2018, Two distinct profiles of fMRI and neurophysiological activity elicited by acetylcholine in visual cortex, PNAS, 115, E12073, 10.1073/pnas.1808507115 Seillier, 2017, Serotonin decreases the gain of visual responses in awake macaque V1, J Neurosci, 37, 11390, 10.1523/JNEUROSCI.1339-17.2017 Watakabe, 2009, Enriched expression of serotonin 1B and 2A receptor genes in macaque visual cortex and their bidirectional modulatory effects on neuronal responses, Cereb Cortex, 19, 1915, 10.1093/cercor/bhn219 Takasaki, 2019, Dual-plane 3-photon microscopy with remote focusing, Biomed Opt Express, 10, 5585, 10.1364/BOE.10.005585 Steinmetz, 2019, Distributed coding of choice, action and engagement across the mouse brain, Nature, 576, 266, 10.1038/s41586-019-1787-x Semedo, 2019, Cortical areas interact through a communication subspace, Neuron, 102, 249, 10.1016/j.neuron.2019.01.026