Advances in the physiology of primary visual cortex in primates
Tài liệu tham khảo
Priebe, 2016, Mechanisms of orientation selectivity in the primary visual cortex, Annu Rev Vis Sci, 2, 85, 10.1146/annurev-vision-111815-114456
Angelucci, 2017, Circuits and mechanisms for surround modulation in visual cortex, Annu Rev Neurosci, 40, 425, 10.1146/annurev-neuro-072116-031418
Seidemann, 2018, Linking V1 activity to behavior, Annu Rev Vis Sci, 4, 287, 10.1146/annurev-vision-102016-061324
Yuille, 2006, Vision as Bayesian inference: analysis by synthesis?, Trends Cogn Sci, 10, 301, 10.1016/j.tics.2006.05.002
Hubel, 1962, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, J Physiol, 160, 106, 10.1113/jphysiol.1962.sp006837
Hubel, 1968, Receptive fields and functional architecture of monkey striate cortex, J Physiol, 195, 215, 10.1113/jphysiol.1968.sp008455
Allman, 1985, Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons, Annu Rev Neurosci, 8, 407, 10.1146/annurev.ne.08.030185.002203
Sadagopan, 2012, Feedforward origins of response variability underlying contrast invariant orientation tuning in cat visual cortex, Neuron, 74, 911, 10.1016/j.neuron.2012.05.007
Sedigh-Sarvestani, 2017, Intracellular, in vivo, dynamics of thalamocortical synapses in visual cortex, J Neurosci, 37, 5250, 10.1523/JNEUROSCI.3370-16.2017
Sedigh-Sarvestani, 2019, Thalamocortical synapses in the cat visual system in vivo are weak and unreliable, eLife, 8, 10.7554/eLife.41925
Garcia-Marin, 2019, Major feedforward thalamic input into layer 4C of primary visual cortex in primate, Cereb Cortex, 29, 134, 10.1093/cercor/bhx311
Hendrickson, 1978, The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and the visual cortex in old and new world primates, J Comp Neurol, 182, 123, 10.1002/cne.901820108
Chariker, 2016, Orientation selectivity from very sparse LGN inputs in a comprehensive model of macaque V1 cortex, J Neurosci, 36, 12368, 10.1523/JNEUROSCI.2603-16.2016
Chariker, 2018, Rhythm and synchrony in a cortical network model, J Neurosci, 38, 8621, 10.1523/JNEUROSCI.0675-18.2018
Benvenuti, 2018, Scale-invariant visual capabilities explained by topographic representations of luminance and texture in primate V1, Neuron, 100, 1504, 10.1016/j.neuron.2018.10.020
Cumming, 1997, Responses of primary visual cortical neurons to binocular disparity without depth perception, Nature, 389, 280, 10.1038/38487
Fujita, 2016, Weighted parallel contributions of binocular correlation and match signals to conscious perception of depth, Phil Trans R Soc B, 371, 20150257, 10.1098/rstb.2015.0257
Henriksen, 2016, Neurons in striate cortex signal disparity in half-matched random-dot stereograms, J Neurosci, 36, 8967, 10.1523/JNEUROSCI.0642-16.2016
Dougherty, 2019, Binocular modulation of monocular V1 neurons, Curr Biol, 29, 381, 10.1016/j.cub.2018.12.004
Michel, 2018, Nonlinear lateral interactions in V1 population responses explained by a contrast gain control model, J Neurosci, 38, 10069, 10.1523/JNEUROSCI.0246-18.2018
Nurminen, 2018, Top-down feedback controls spatial summation and response amplitude in primate visual cortex, Nat Commun, 9, 2281, 10.1038/s41467-018-04500-5
Bijanzadeh, 2018, Distinct laminar processing of local and global context in primate primary visual cortex, Neuron, 100, 259, 10.1016/j.neuron.2018.08.020
Freeman, 2013, A functional and perceptual signature of the second visual area in primates, Nat Neurosci, 16, 974, 10.1038/nn.3402
Ziemba, 2019, Laminar differences in responses to naturalistic texture in macaque V1 and V2, J Neurosci, 39, 9748, 10.1523/JNEUROSCI.1743-19.2019
Tang, 2018, Complex pattern selectivity in macaque primary visual cortex revealed by large-scale two-photon imaging, Curr Biol, 28, 38, 10.1016/j.cub.2017.11.039
Tang, 2018, Large-scale two-photon imaging revealed super-sparse population codes in the V1 superficial layer of awake monkeys, Elife, 7, 10.7554/eLife.33370
Zhang, 2019, Convolutional neural network models of V1 responses to complex patterns, J Comput Neurosci, 46, 33, 10.1007/s10827-018-0687-7
Michelson, 2017, Majority of choice-related variability in perceptual decisions is present in early sensory cortex, bioRxiv
Rosenbaum, 2017, The spatial structure of correlated neuronal variability, Nat Neurosci, 20, 107, 10.1038/nn.4433
Bondy, 2018, Feedback determines the structure of correlated variability in primary visual cortex, Nat Neurosci, 21, 598, 10.1038/s41593-018-0089-1
Goris, 2017, Dissociation of choice formation and choice-correlated activity in macaque visual cortex, J Neurosci, 37, 5195, 10.1523/JNEUROSCI.3331-16.2017
Bányai, 2019, Stimulus complexity shapes response correlations in primary visual cortex, PNAS, 116, 2723, 10.1073/pnas.1816766116
Cadena, 2019, Deep convolutional models improve predictions of macaque V1 responses to natural images, PLoS Comput Biol, 15, e1006897, 10.1371/journal.pcbi.1006897
Barczak, 2019, Dynamic modulation of cortical excitability during visual active sensing, Cell Rep, 27, 3447, 10.1016/j.celrep.2019.05.072
Gutnisky, 2017, Spontaneous fluctuations in visual cortical responses influence population coding accuracy, Cereb Cortex, 27, 1409, 10.1093/cercor/bhv312
Motter, 1993, Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli, J Neurophysiol, 70, 909, 10.1152/jn.1993.70.3.909
McAdams, 2005, Attention modulates the responses of simple cells in monkey primary visual cortex, J Neurosci, 25, 11023, 10.1523/JNEUROSCI.2904-05.2005
Mock, 2018, Dynamic communication of attention signals between the LGN and V1, J Neurophysiol, 120, 1625, 10.1152/jn.00224.2018
Cox, 2019, Spiking suppression precedes cued attentional enhancement of neural responses in primary visual cortex, Cereb Cortex, 29, 77, 10.1093/cercor/bhx305
Hembrook-Short, 2017, Attentional modulation of neuronal activity depends on neuronal feature selectivity, Curr Biol, 27, 1878, 10.1016/j.cub.2017.05.080
Hembrook-Short, 2019, Attention enhances the efficacy of communication in V1 local circuits, J Neurosci, 39, 1066, 10.1523/JNEUROSCI.2164-18.2018
Seidemann, 2016, Calcium imaging with genetically encoded indicators in behaving primates, eLife, 5, 1, 10.7554/eLife.16178
Aschner, 2018, Temporal contingencies determine whether adaptation strengthens or weakens normalization, J Neurosci, 38, 10129, 10.1523/JNEUROSCI.1131-18.2018
Shimegi, 2016, Cholinergic and serotonergic modulation of visual information processing in monkey V1, J Physiol Paris, 110, 44, 10.1016/j.jphysparis.2016.09.001
Coppola, 2018, Is there a canonical cortical circuit for the cholinergic system? Anatomical differences across common model systems, Front Neural Circuits, 12, 8, 10.3389/fncir.2018.00008
Thiele, 2018, Neuromodulation of attention, Neuron, 97, 769, 10.1016/j.neuron.2018.01.008
Krueger, 2019, Structure and function of dual-source cholinergic modulation in early vision, J Comp Neurol, 527, 738, 10.1002/cne.24590
Disney, 2007, Gain modulation by nicotine in macaque v1, Neuron, 56, 701, 10.1016/j.neuron.2007.09.034
Zaldivar, 2018, Two distinct profiles of fMRI and neurophysiological activity elicited by acetylcholine in visual cortex, PNAS, 115, E12073, 10.1073/pnas.1808507115
Seillier, 2017, Serotonin decreases the gain of visual responses in awake macaque V1, J Neurosci, 37, 11390, 10.1523/JNEUROSCI.1339-17.2017
Watakabe, 2009, Enriched expression of serotonin 1B and 2A receptor genes in macaque visual cortex and their bidirectional modulatory effects on neuronal responses, Cereb Cortex, 19, 1915, 10.1093/cercor/bhn219
Takasaki, 2019, Dual-plane 3-photon microscopy with remote focusing, Biomed Opt Express, 10, 5585, 10.1364/BOE.10.005585
Steinmetz, 2019, Distributed coding of choice, action and engagement across the mouse brain, Nature, 576, 266, 10.1038/s41586-019-1787-x
Semedo, 2019, Cortical areas interact through a communication subspace, Neuron, 102, 249, 10.1016/j.neuron.2019.01.026