Advances in structural vibration control application of magneto-rheological visco-elastomer
Tài liệu tham khảo
Dyke, 1996, Modeling and control of magnetorheological dampers for seismic response reduction, Smart Mater. Struct., 5, 565, 10.1088/0964-1726/5/5/006
Symans, 1999, Semi-active control systems for seismic protection of structures: a state-of-the-art review, Eng. Struct., 21, 469, 10.1016/S0141-0296(97)00225-3
Spencer, 2003, State of the art of structural control, ASCE J. Struct. Eng., 129, 845, 10.1061/(ASCE)0733-9445(2003)129:7(845)
Ying, 2003, A stochastic optimal semi-active control strategy for ER/MR dampers, J. Sound Vib., 259, 45, 10.1006/jsvi.2002.5136
Cetin, 2011, A new semiactive nonlinear adaptive controller for structures using MR damper: design and experimental validation, Nonlinear Dynam., 66, 731, 10.1007/s11071-011-9946-0
Casciati, 2012, Active and semi-active control of structures — theory and applications: a review of recent advances, J. Intell. Mater. Syst. Struct., 23, 1181, 10.1177/1045389X12445029
Cha, 2013, Comparative studies of semiactive control strategies for MR dampers: pure simulation and real-time hybrid tests, ASCE J. Struct. Eng., 139, 1237, 10.1061/(ASCE)ST.1943-541X.0000639
Rajamohan, 2010, Optimum design of a multilayer beam partially treated with magnetorheological fluid, Smart Mater. Struct., 19, 065002, 10.1088/0964-1726/19/6/065002
Shiga, 1995, Magnetoviscoelastic behavior of composite gels, J. Appl. Polym. Sci., 58, 787, 10.1002/app.1995.070580411
Carlson, 2000, MR fluid, foam and elastomer devices, Mechatronics, 10, 555, 10.1016/S0957-4158(99)00064-1
Ginder, 2002, Magnetostrictive phenomena in magnetorheological elastomers, Internat. J. Modern Phys. B, 16, 2412, 10.1142/S021797920201244X
Bellan, 2002, Field dependence of viscoelastic properties of MR elastomers, Internat. J. Modern Phys. B, 16, 2447, 10.1142/S0217979202012499
Demchuk, 2002, Viscoelastic properties of magnetorheological elastomers in the regime of dynamic deformation, J. Eng. Phys. Thermophys., 75, 396, 10.1023/A:1015697723112
Shen, 2004, Experimental research and modeling of magnetorheological elastomers, J. Intell. Mater. Syst. Struct., 15, 27, 10.1177/1045389X04039264
Nikitin, 2005, Magnetoelastics and their properties, Internat. J. Modern Phys. B, 19, 1360, 10.1142/S021797920503030X
Gong, 2005, Fabrication and characterization of isotropic magnetorheological elastomers, Polym. Test., 24, 669, 10.1016/j.polymertesting.2005.03.015
Bose, 2007, Viscoelastic properties of silicone-based magnetorheological elastomers, Internat. J. Modern Phys. B, 21, 4790, 10.1142/S0217979207045670
Kallio, 2007, Dynamic compression testing of a tunable spring element consisting of a magnetorheological elastomer, Smart Mater. Struct., 16, 506, 10.1088/0964-1726/16/2/032
Koo, 2010, Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings, Smart Mater. Struct., 19, 117002, 10.1088/0964-1726/19/11/117002
Kaleta, 2011, Magnetomechanical properties of anisotropic and isotropic magnetorheological composites with thermoplastic elastomer matrices, Smart Mater. Struct., 20, 085006, 10.1088/0964-1726/20/8/085006
Jolly, 1996, A model of the behaviour of magnetorheological materials, Smart Mater. Struct., 5, 607, 10.1088/0964-1726/5/5/009
Davis, 1999, Model of magnetorheological elastomers, J. Appl. Phys., 85, 3348, 10.1063/1.369682
Zhou, 2004, Complex shear modulus of a magnetorheological elastomer, Smart Mater. Struct., 13, 1203, 10.1088/0964-1726/13/5/024
Ying, 2013, Nonlinear dynamic characteristics of magneto-rheological visco-elastomers, Sci. China Technol. Sci., 56, 878, 10.1007/s11431-013-5168-7
York, 2007, A new MR fluid-elastomer vibration isolator, J. Intell. Mater. Syst. Struct., 18, 1221, 10.1177/1045389X07083622
Hu, 2008, Hybrid magnetorheological fluid-elastomeric lag dampers for helicopter stability augmentation, Smart Mater. Struct., 17, 045021, 10.1088/0964-1726/17/4/045021
Du, 2011, Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator, Smart Mater. Struct., 20, 105003, 10.1088/0964-1726/20/10/105003
Wang, 2009, A new magnetorheological fluid-elastomer mount: phenomeno-logical modeling and experimental study, Smart Mater. Struct., 18, 095045, 10.1088/0964-1726/18/9/095045
Jung, 2011, Seismic performance analysis of a smart base-isolation system considering dynamics of MR elastomers, J. Intell. Mater. Syst. Struct., 22, 1439, 10.1177/1045389X11414224
Zhou, 2005, Magnetorheological elastomer-based smart sandwich beams with nonconduction skins, Smart Mater. Struct., 14, 1001, 10.1088/0964-1726/14/5/038
Zhou, 2006, Study on the adjustable rigidity of magnetorheological-elastomer-based sandwich beams, Smart Mater. Struct., 15, 59, 10.1088/0964-1726/15/1/035
Choi, 2010, Vibration characteristics of sandwich beam with steel skins and magnetorheological elastomer cores, Adv. Struct. Eng., 13, 837, 10.1260/1369-4332.13.5.837
Yeh, 2013, Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treatment, Smart Mater. Struct., 22, 035010, 10.1088/0964-1726/22/3/035010
Hasheminejad, 2010, Magnetic-field-dependent sound transmission properties of magnetorheological elastomer-based adaptive panels, Smart Mater. Struct., 19, 035006, 10.1088/0964-1726/19/3/035006
Dwivedy, 2009, Parametric instability regions of a soft and magnetorheological elastomer cored sandwich beam, J. Sound Vib., 325, 686, 10.1016/j.jsv.2009.03.039
Nayak, 2011, Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary conditions, J. Sound Vib., 330, 1837, 10.1016/j.jsv.2010.10.041
Ying, 2009, Micro-vibration response of a stochastically excited sandwich beam with a magnetorheological elastomer core and mass, Smart Mater. Struct., 18, 095005, 10.1088/0964-1726/18/9/095005
Ni, 2011, Micro-vibration suppression of equipment supported on a floor incorporating magneto-rheological elastomer core, J. Sound Vib., 330, 4369, 10.1016/j.jsv.2011.04.020
Hu, 2011, Experimental investigation of the vibration characteristics of a magnetorheological elasmoter sandwich beam under non-homogeneous small magnetic fields, Smart Mater. Struct., 20, 127001, 10.1088/0964-1726/20/12/127001
Ying, 2015, Stochastic microvibration response analysis of a magnetorheological viscoelastomer based sandwich beam under localized magnetic fields, Appl. Math. Model., 39, 5559, 10.1016/j.apm.2015.01.028
Ying, 2014, Stochastic micro-vibration suppression of a sandwich plate using a magneto-rheological visco-elastomer core, Smart Mater. Struct., 23, 025019, 10.1088/0964-1726/23/2/025019
Ying, 2015, Stochastic micro-vibration response characteristics of a sandwich plate with MR visco-elastomer core and mass, Smart Struct. Syst., 16, 141, 10.12989/sss.2015.16.1.141
Ying, 2017, A response-adjustable sandwich beam with harmonic distribution parameters under stochastic excitations, Int. J. Struct. Stab. Dyn., 17, 1750075, 10.1142/S0219455417500754
Ying, 2015, Parametric optimal bounded feedback control for smart parameter-controllable composite structures, J. Sound Vib., 339, 38, 10.1016/j.jsv.2014.11.018
Ying, 2017, Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core, Smart Struct. Syst., 19, 21, 10.12989/sss.2017.19.1.021