Advances in magnetoelectric multiferroics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).
Wang, Y., Hu, J., Lin, Y. & Nan, C.-W. Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2, 61–68 (2010).
Pyatakov, A. P. & Zvezdin, A. K. Magnetoelectric and multiferroic media. Phys.-Uspekhi 55, 557–581 (2012).
Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).
Dong, S., Liu, J.-M., Cheong, S. W. & Ren, Z. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv. Phys. 64, 519–626 (2015).
Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).
Vaz, C. et al. Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010).
Mundy, J. et al. Atomically engineered ferroic layers yield a room temperature magnetoelectric multiferroic. Nature 537, 523–527 (2016).
Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).
Cai, R. et al. Multiferroic nanopatterned hybrid material with room-temperature magnetic switching of the electric polarization. Adv. Mater. 29, 1604604 (2017).
Poddar, S. et al. Room-temperature magnetic switching of the electric polarization in ferroelectric nanopillars. ACS Nano 12, 576–584 (2018).
Goodenough, J. B. & Zhou, J. Varied roles of Pb in transition-metal PbMO3 perovskites (M = Ti, V, Cr, Mn, Fe, Ni, Ru). Sci. Technol. Adv. Mater. 16, 036003 (2015).
Inaguma, Y. et al. Structure and Mössbauer studies of F−O ordering in antiferromagnetic perovskite PbFeO2F. Chem. Mater. 17, 1386–1390 (2005).
Katsumata, T., Nakashima, M., Umemoto, H. & Inaguma, Y. Synthesis of the novel perovskite-type oxyfluoride PbScO2F, under high pressure and high temperature. J. Solid State Chem. 181, 2737–2740 (2008).
Lezaic, M. & Spaldin, N. A. High-temperature multiferroicity and strong magnetocrystalline anisotropy in 3d-5d double perovskites. Phys. Rev. B 83, 24410 (2011).
Bilc, D. I. & Singh, D. J. Frustration of tilts and A-site driven ferroelectricity in KNbO3−LiNbO3 alloys. Phys. Rev. Lett. 96, 147602 (2006).
Rushchanskii, K. Z. et al. A multiferroic material to search for the permanent electric dipole moment of the electron. Nat. Mater. 9, 649–654 (2010).
Lee, J. H. et al. A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature 466, 954–958 (2010).
Bousquet, E., Spaldin, N. A. & Ghosez, Ph Strain-induced ferroelectricity in simple rocksalt binary oxides. Phys. Rev. Lett. 104, 037601 (2010).
Fox, D. L. & Scott, J. F. Ferroelectrically induced ferromagnetism. J. Phys. C 10, L329–L331 (1977).
Fennie, C. J. & Rabe, K. M. Ferroelectric transition in YMnO3 from first principles. Phys. Rev. B 72, 100103R (2005).
Oh, Y. S. et al. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca, Sr)3Ti2O7 crystals. Nat. Mater. 14, 407–413 (2015).
Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008).
Benedek, N. A. & Fennie, C. J. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys. Rev. Lett. 106, 107204 (2012).
Benedek, N. A., Rondinelli, J. M., Djani, H., Ghosez, Ph & Lightfoot, P. Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalton Trans. 44, 10543–10558 (2015).
Choi, T. et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mater. 9, 253–258 (2010).
Wu, W., Horibe, Y., Lee, N., Cheong, S.-W. & Guest, J. R. Conduction of topologically protected charged ferroelectric domain walls. Phys. Rev. Lett. 108, 077203 (2012).
Ikeda, N. et al. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature 436, 1136–1138 (2005).
de Groot, J. et al. Charge order in LuFe2O4: an unlikely route to ferroelectricity. Phys, Rev. Lett. 108, 187601 (2012).
Senn, M. S., Wright, J. P. & Attfield, J. P. Charge order and three-site distortions in the Verwey structure of magnetite. Nature 481, 173–176 (2012).
Alexe, M. et al. Ferroelectric switching in multiferroic magnetite Fe3O4 thin films. Adv. Mater. 21, 4452–4455 (2009).
Lunkenheimer, P. et al. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism. Nat. Mater. 11, 755–758 (2012).
Qin, W., Xu, B. & Ren, S. An organic approach for nanostructured multiferroics. Nanoscale 7, 9122–9132 (2015).
Stroppa, A., Barone, P., Jain, P., Perez-Mato, J. M. & Picozzi, S. Hybrid improper ferroelectricity in a multiferroic and magnetoelectric metal-organic framework. Adv. Mater. 25, 2284–2290 (2013).
Kimura, T., Sekio, Y., Nakamura, H., Siegrist, T. & Ramirez, A. P. Cupric oxide as an induced-multiferroic with high-T C. Nat. Mater. 7, 291–294 (2008).
Morin, M. et al. Incommensurate magnetic structure, Fe/Cu chemical disorder, and magnetic interactions in the high-temperature multiferroic YBaCuFeO5. Phys. Rev. B 91, 064408 (2015).
Lee, J. H. & Rabe, K. M. Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles. Phys. Rev. Lett. 104, 207204 (2010).
Rondinelli, J. M. & Spaldin, N. A. Non-d 0 Mn-driven ferroelectricity in antiferromagnetic BaMnO3. Phys. Rev. B 79, 205119 (2009).
Sakai, H. et al. Displacement type ferroelectricity with off-center magnetic ions in perovskite Sr1-xBaxMnO3. Phys. Rev. Lett. 107, 137601 (2011).
Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).
Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009).
Bea, H. et al. Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett. 102, 217603 (2009).
He, Q. et al. Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics. Nat. Commun. 2, 225 (2011).
Dieguez, O., Gonzalez-Vazquez, O. E., Wojdel, J. C. & Íñiguez, J. First-principles predictions of low-energy phases of multiferroic BiFeO3. Phys Rev. B 83, 094105 (2011).
Agbelele, A. et al. Strain and magnetic field induced spin-structure transitions in multiferroic BiFeO3. Adv. Mater. 29, 1602327 (2017).
Palai, R. et al. β -phase and γ - β metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B 77, 014110 (2008).
Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. & Cheong, S.-W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63–66 (2009).
Gao, T. et al. A review: preparation of bismuth ferrite nanoparticles and its applications in visible-light induced photocatalysis. Rev. Adv. Mater. Sci. 40, 97–109 (2015).
Kundys, B., Viret, M., Colson, D. & Kundys, D. O. Light-induced size changes in BiFeO3 crystals. Nat. Mater. 9, 803–805 (2010).
Sando, D. et al. Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3. Nat. Commun. 7, 10718 (2016).
Waghmare, S. D. et al. Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures. Mater. Res. Bull. 47, 4169–4173 (2012).
Jarrier, R. et al. Surface phase transitions in BiFeO3 below room temperature. Phys. Rev. B 85, 184104 (2012).
Selbach, S. M., Tybell, T., Einarsrud, M.-A. & Grande, T. Size-dependent properties of multiferroic BiFeO3 nanoparticles. Chem. Mater. 19, 6478–6484 (2007).
Farokhipoor, S. & Noheda, B. Conduction through 71o domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011).
Maksymovych, P. et al. Dynamic conductivity of ferroelectric domain walls in BiFeO3. Nano Lett. 11, 1906–1912 (2011).
Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).
Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Gopalan, V. & Shur, V. Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B 83, 235313 (2011).
Domingo, N. et al. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy. J. Phys. Condens. Matter 29, 334003 (2017).
Daraktchiev, M., Catalan, G. & Scott, J. F. Landau theory of domain wall magnetoelectricity. Phys. Rev. B 81, 024115 (2010).
Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotech. 5, 143–147 (2010).
Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012).
Sluka, T., Tagantsev, A. K., Bednyakov, P. & Setter, N. Free-electron gas at charged domain walls in insulating BaTiO3. Nat. Commun. 4, 1808 (2013).
Farokhipoor, S. et al. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide. Nature 515, 379–383 (2014).
Salje, E. K. H. Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. Chem. Phys. Chem. 11, 940–950 (2010).
Matsubara, M., Kaneko, Y., He, J.-P., Okamoto, H. & Tokura, Y. Ultrafast polarization and magnetization response of multiferroic GaFeO3 using time-resolved nonlinear optical techniques. Phys. Rev. B 79, 140411 (2009).
Kalinin, S. V. & Pennycook, S. Single-atom fabrication with electron and ion beams: from surfaces and two-dimensional materials toward three-dimensional atom-by-atom assembly. MRS Bull. 42, 637–643 (2016).
Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).
Orenstein, J. W. Ultrafast spectroscopy of quantum materials. Phys. Today 65, 44–50 (September, 2012).
Takahashi, K., Kida, N. & Tonouchi, M. Terahertz radiation by an ultrafast spontaneous polarization modulation of multiferroic BiFeO3 thin films. Phys. Rev. Lett. 96, 117402 (2006).
Borisevich, A. Y. et al. Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 4, 6071–6079 (2010).
Verbeeck, J., Tian, H. & Schattschneider, P. Production and application of electron vortex beams. Nature 467, 301–304 (2010).
Denev, S. A. et al. Probing ferroelectrics using optical second harmonic generation. J. Am. Ceram. Soc. 94, 2699–2727 (2011).
De Luca, G. et al. Nanoscale design of polarization in ultrathin ferroelectric heterostructures. Nat. Commun. 8, 1419 (2017).
Zhong, W., Vanderbilt, D. & Rabe, K. M. Phase transitions in BaTiO3 from first principles. Phys. Rev. Lett. 73, 1861–1864 (1994).
Rabe, K. M. & Waghmare, U. V. Localized basis for effective lattice Hamiltonians: lattice Wannier functions. Phys. Rev. B 52, 13236–13246 (1995).
Liu, S., Grinberg, I. & Rappe, A. M. Development of a bond-valence based interatomic potential for BiFeO3 for accurate molecular dynamics simulations. J. Phys. Condens. Matter 25, 102202 (2013).
Rahmedov, D., Wang, D., Íñiguez, J. & Bellaiche, L. Magnetic cycloid of BiFeO3 from atomistic simulations. Phys. Rev. Lett. 109, 037207 (2012).
Karpinsky, D. V. et al. Thermodynamic potential and phase diagram for multiferroic bismuth ferrite (BiFeO3). npj Comp. Mater. 3, 20 (2017).
Garcia-Fernandez, P., Wojdel, J. C., Iniguez, J. & Junquera, J. Second-principles method for materials simulations including electron and lattice degrees of freedom. Phys. Rev. B 93, 195137 (2016).
Wojdel, J. C., Hermet, P., Ljungberg, M. P., Ghosez, P. & Iniguez, J. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides. J. Phys. Condens. Matter 25, 305401 (2013).
Liu, S., Grinberg, I. & Rappe, A. Intrinsic ferroelectric switching from first principles. Nature 534, 360363 (2016).
Bhattacharjee, S., Rahmedov, D., Wang, D., Íñiguez, J. & Bellaiche, L. Ultrafast switching of the electric polarization and magnetic chirality in BiFeO3 by an electric field. Phys. Rev. Lett. 112, 147601 (2014).
Wang, D., Weerasinghe, J., Albarakati, A. & Bellaiche, L. Terahertz dielectric response and coupled dynamics of ferroelectrics and multiferroics from effective Hamiltonian simulations. Int. J. Mod. Phys. B 27, 1330016 (2013).
Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter 20, 434203 (2008).
Spaldin, N. A., Fechner, M., Bousquet, E., Balatsky, A. V. & Nordström, L. Monopole-based formalism for the diagonal magnetoelectric response. Phys. Rev. B 88, 094429 (2013).
Gao, Y., Vanderbilt, D. & Xiao, D. Microscopic theory of spin toroidization in periodic crystals. Phys. Rev. B 97, 134423 (2018).
Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).
Chandra, P., Dawber, M., Littlewood, P. B. & Scott, J. F. Scaling of the coercive field with thickness in thin-film ferroelectrics. Ferroelectrics 313, 7–13 (2004).
Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).
Bibes, M. & Barthelemy, A. Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008).
Song, C., Cui, B., Li, F., Zhou, X. & Pan, F. Recent progress in voltage control of magnetism: materials, mechanisms, and performance. Prog. Mater. Sci. 87, 33–82 (2017).
Allibe, J. et al. Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3. Nano Lett. 12, 1141–1145 (2012).
Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014).
Yu, P. et al. Interface control of bulk ferroelectric polarization. Proc. Natl Acad. Sci. USA 109, 9710–9715 (2012).
Wu, S. M. et al. Reversible electric control of exchange bias in a multiferroic field effect device. Nat. Mater. 9, 756–761 (2010).
He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).
Gruner, M., Hoffmann, E. & Entel, P. Instability of the rhodium magnetic moment as the origin of the metamagnetic phase transition in a-FeRh. Phys. Rev. B 67, 064415 (2003).
Moruzzi, V. L. & Marcus, P. M. Antiferromagnetic-ferromagnetic transition in FeRh. Phys. Rev. B 46, 2864 (1992).
Cherifi, R. O. et al. Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345–351 (2014).
Sun, N. X. & Srinivasan, G. Voltage control of magnetism in multiferroic heterostructures and devices. Spin 2, 1240004 (2012). 1.
Lin, H. et al. Integrated magnetics and multiferroics for compact and power-efficient sensing, memory, power, RF, and microwave electronics. IEEE Trans. Magn. 52, 4002208 (2016).
Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).
Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–403 (2004).
Nakayama, H. et al. Rashba-Edelstein magnetoresistance in metallic heterostructures. Phys. Rev. Lett. 117, 116602 (2016).
Hoffmann, A. & Bader, S. D. Opportunities at the frontiers of spintronics. Phys. Rev. Appl. 4, 047001 (2015).
Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).
Chu, Y. H. et al. Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitution. Appl. Phys. Lett. 92, 102909 (2008).
Maksymovych, P. et al. Ultrathin limit and dead-layer effects in local polarization switching of BiFeO3. Phys. Rev. B 85, 014119 (2012).
Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261–1266 (2016).
Dhillon, S. S. et al. The 2017 terahertz science and technology road map. J. Phys. D 50, 043001 (2017).
Juraschek, D., Fechner, M., Balatsky, A. V. & Spaldin, N. A. Dynamical multiferroicity. Phys. Rev. Mater. 1, 104401 (2017).
Abraha, K. & Tilley, D. R. Theory of far infrared properties of magnetic surfaces, films and superlattices. Surface Sci. Rep. 24, 129–222 (1996).
Talbayev, D. et al. Long-wavelength magnetic and magnetoelectric excitations in the ferroelectric antiferromagnet BiFeO3. Phys. Rev. B 83, 094403 (2011).