Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes

Yi Cheng1, San Ping Jiang1
1Fuels and Energy Technology Institute & Department of Chemical Engineering, Curtin University, Perth, WA 6102, Australia

Tài liệu tham khảo

Gahleitner, 2013, Int. J. Hydrogen Energy, 38, 2039, 10.1016/j.ijhydene.2012.12.010 Jensen, 2007, Int. J. Hydrogen Energy, 32, 3253, 10.1016/j.ijhydene.2007.04.042 Balat, 2008, Int. J. Hydrogen Energy, 33, 4013, 10.1016/j.ijhydene.2008.05.047 Manage, 2011, Int. J. Hydrogen Energy, 36, 5782, 10.1016/j.ijhydene.2011.01.075 Jiang, 2011, Fuel cells: advances and challenges, vol. II, 179 Meyer, 2008, Nature, 451, 778, 10.1038/451778a Cruz, 2011, Int. J. Electrochem. Sci., 6, 6607 Di Blasi, 2009, J. Appl. Electrochem., 39, 191, 10.1007/s10800-008-9651-y Dau, 2010, Chemcatchem, 2, 724, 10.1002/cctc.201000126 Bocca, 1999, Int. J. Hydrogen Energy, 24, 21, 10.1016/S0360-3199(98)00012-3 Trotochaud, 2012, J. Am. Chem. Soc., 134, 17253, 10.1021/ja307507a Doyle, 2013, Phys. Chem. Chem. Phys., 15, 5224, 10.1039/c3cp43464h Cibrev, 2013, Int. J. Hydrogen Energy, 38, 2746, 10.1016/j.ijhydene.2012.12.027 Doyle, 2013, J. Electrochem. Soc., 160, H142, 10.1149/2.015303jes Cheng, 2011, Nat. Chem., 3, 79, 10.1038/nchem.931 May, 2012, J. Phys. Chem. Lett., 3, 3264, 10.1021/jz301414z Raabe, 2012, Adv. Funct. Mater., 22, 3378, 10.1002/adfm.201103173 Grimaud, 2013, Nat. Commun., 4, 10.1038/ncomms3439 Trasatti, 1972, J. Electroanal. Chem. Interfacial Electrochem., 39, 163, 10.1016/S0022-0728(72)80485-6 Kelly, 2014, J. Power Sources, 271, 76, 10.1016/j.jpowsour.2014.07.179 Esposito, 2010, Angew. Chem. Int. Ed., 49, 9859, 10.1002/anie.201004718 Esposito, 2011, Energy Environ. Sci., 4, 3900, 10.1039/c1ee01851e Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483 Kibsgaard, 2012, Nat. Mater., 11, 963, 10.1038/nmat3439 Voiry, 2013, Nat. Mater., 12, 850, 10.1038/nmat3700 Popczun, 2013, J. Am. Chem. Soc., 135, 9267, 10.1021/ja403440e Popczun, 2014, Angew. Chem. Int. Ed., 53, 5427, 10.1002/anie.201402646 Tian, 2014, J. Am. Chem. Soc., 136, 7587, 10.1021/ja503372r Zheng, 2014, Nat. Commun., 5 Cruz, 2012, Int. J. Electrochem. Sci., 7, 7866 Miles, 1976, J. Electrochem. Soc., 123, 1459, 10.1149/1.2132619 Danilovic, 2014, J. Phys. Chem. Lett., 5, 2474, 10.1021/jz501061n Reier, 2012, ACS Catal., 2, 1765, 10.1021/cs3003098 Subbaraman, 2012, Nat. Mater., 11, 550, 10.1038/nmat3313 Li, 2011, Phys. Chem. Chem. Phys., 13, 1162, 10.1039/C0CP00993H Diaz-Morales, 2015, ACS Catal., 5380, 10.1021/acscatal.5b01638 Louie, 2013, J. Am. Chem. Soc., 135, 12329, 10.1021/ja405351s Friebel, 2015, J. Am. Chem. Soc., 137, 1305, 10.1021/ja511559d Wang, 2015, Nat. Commun., 6 Liu, 2015, Energy Environ. Sci., 8, 1719, 10.1039/C5EE01290B Chen, 2015, ACS Cent. Sci., 1, 244, 10.1021/acscentsci.5b00227 Smith, 2013, J. Am. Chem. Soc., 135, 11580, 10.1021/ja403102j Gerken, 2014, Energy Environ. Sci., 7, 2376, 10.1039/C4EE00436A Jung, 2014, Angew. Chem. Int. Ed., 53, 4582, 10.1002/anie.201311223 Raabe, 2012, Adv. Funct. Mater., 22, 3378, 10.1002/adfm.201103173 Risch, 2013, J. Phys. Chem. C., 117, 8628, 10.1021/jp3126768 Suntivich, 2011, Science, 334, 1383, 10.1126/science.1212858 Jiang, 2012, Adv. Mater., 24, 5166, 10.1002/adma.201202146 Yu, 2014, ACS Appl. Mater. Interfaces, 6, 15395, 10.1021/am503938c Zhou, 2014, J. Mater. Chem. A, 2, 11799, 10.1039/C4TA01952K Cheng, 2014, Int. J. Hydrogen Energy, 39, 20662, 10.1016/j.ijhydene.2014.06.156 Wu, 2012, Nano Res., 5, 521, 10.1007/s12274-012-0237-y Mette, 2012, Chemcatchem, 4, 851, 10.1002/cctc.201100434 Gong, 2013, J. Am. Chem. Soc., 135, 8452, 10.1021/ja4027715 Tasis, 2006, Chem. Rev., 106, 1105, 10.1021/cr050569o Tian, 2006, J. Phys. Chem. B, 110, 5343, 10.1021/jp056401o Meng, 2009, Prog. Nat. Sci., 19, 801, 10.1016/j.pnsc.2008.08.011 Wang, 2008, Langmuir, 24, 10505, 10.1021/la800925t Liang, 2013, J. Am. Chem. Soc., 135, 2013, 10.1021/ja3089923 Lu, 2013, J. Mater. Chem. A, 1, 12053, 10.1039/c3ta12912h Murugesan, 2011, Appl. Catal. B-Environ., 103, 266, 10.1016/j.apcatb.2010.07.038 Hsin, 2007, J. Am. Chem. Soc., 129, 9999, 10.1021/ja072367a Wang, 2008, Nanotechnology, 19 Tessonnier, 2011, Chemsuschem, 4, 824, 10.1002/cssc.201100175 Cheng, 2014, Acs Appl. Mater. Interfaces, 6, 10089, 10.1021/am500988p Lu, 2015, J. Am. Chem. Soc., 137, 2901, 10.1021/ja509879r Yang, 2011, Angew. Chem. -Int. Ed., 50, 7132, 10.1002/anie.201101287 Shi, 2013, J. Mater. Chem. A, 1, 14853, 10.1039/c3ta12647a Zhu, 2014, J. Mater. Chem. A, 2, 15448, 10.1039/C4TA02427C Wang, 2015, ACS Appl. Mater. Interfaces, 7, 4048, 10.1021/am507744y Li, 2015, J. Mater. Chem. A, 3, 17392, 10.1039/C5TA03900B Park, 2015, Chemsuschem, 8, 1058, 10.1002/cssc.201402986 Zhao, 2013, Nat. Commun., 4 Tian, 2014, Small, 10, 2251, 10.1002/smll.201303715 Chen, 2014, Phys. Chem. Chem. Phys., 16, 8106, 10.1039/c3cp55191a Ma, 2014, Angew. Chem. Int. Ed., 53, 7281, 10.1002/anie.201403946 Chen, 2014, Adv. Mater., 26, 2925, 10.1002/adma.201305608 Li, 2012, Nat. Nanotechnol., 7, 394, 10.1038/nnano.2012.72 Waki, 2014, Energy Environ. Sci., 7, 1950, 10.1039/C3EE43743D Cheng, 2015, Appl. Catal. B -Environ., 163, 96, 10.1016/j.apcatb.2014.07.049 Cheng, 2015, Chem. Commun. (Camb.), 51, 13764, 10.1039/C5CC02218E