Advances in delivery systems for the therapeutic application of LL37
Tài liệu tham khảo
Chambers, 2009, Waves of resistance: Staphylococcus aureus in the antibiotic era, Nat. Rev. Microbiol., 7, 629, 10.1038/nrmicro2200
Brogden, 2005, Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?, Nat. Rev. Microbiol., 3, 238, 10.1038/nrmicro1098
Hancock, 2006, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies, Nat. Biotechnol., 24, 1551, 10.1038/nbt1267
Schmidtchen, 2013, Peptide interactions with bacterial lipopolysaccharides, Curr. Opin. Colloid Interface Sci., 18, 381, 10.1016/j.cocis.2013.06.003
Tjabringa, 2005, The human cathelicidin LL-37: a multifunctional peptide involved in infection and inflammation in the lung, Pulm. Pharmacol. Therapeut., 18, 321, 10.1016/j.pupt.2005.01.001
Hancock, 1998, Cationic peptides: a new source of antibiotics, Trends Biotechnol., 16, 82, 10.1016/S0167-7799(97)01156-6
Gronberg, 2014, Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial, Wound Repair Regen., 22, 613, 10.1111/wrr.12211
Porcelli, 2008, NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocholine micelles, Biochemistry, 47, 5565, 10.1021/bi702036s
Lozeau, 2018, Concentration-dependent, membrane-selective activity of human LL37 peptides modified with collagen binding domain sequences, Biomacromolecules, 19, 4513, 10.1021/acs.biomac.8b00802
Beaumont, 2013
Wimley, 1994, Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores, Protein Sci., 3, 1362, 10.1002/pro.5560030902
Wong, 2011, Antifungal action of human cathelicidin fragment (LL13-37) on Candida albicans, Peptides, 32, 1996, 10.1016/j.peptides.2011.08.018
Barlow, 2011, Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37, PloS One, 6, 10.1371/journal.pone.0025333
Vandamme, 2012, A comprehensive summary of LL-37, the factotum human cathelicidin peptide, Cell. Immunol., 280, 22, 10.1016/j.cellimm.2012.11.009
Fabisiak, 2016, LL-37: cathelicidin-related antimicrobial peptide with pleiotropic activity, Pharmacol. Rep., 68, 802, 10.1016/j.pharep.2016.03.015
Koczulla, 2003, An angiogenic role for the human peptide antibiotic LL-37/hCAP-18, J. Clin. Invest., 111, 1665, 10.1172/JCI17545
Pfosser, 2010, NF kappaB activation in embryonic endothelial progenitor cells enhances neovascularization via PSGL-1 mediated recruitment: novel role for LL37, Stem Cell., 28, 376, 10.1002/stem.280
Carretero, 2008, In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37, J. Invest. Dermatol., 128, 223, 10.1038/sj.jid.5701043
Büchau, 2010, The host defense peptide cathelicidin is required for NK cell-mediated suppression of tumor growth, J. Immunol., 184, 369, 10.4049/jimmunol.0902110
Chuang, 2009, Treatment with LL-37 peptide enhances antitumor effects induced by CpG oligodeoxynucleotides against ovarian cancer, Hum. Gene Ther., 20, 303, 10.1089/hum.2008.124
Wu, 2010, Emerging roles of the host defense peptide LL-37 in human cancer and its potential therapeutic applications, Int. J. Canc., 127, 1741, 10.1002/ijc.25489
Kittaka, 2013, The antimicrobial peptide LL37 promotes bone regeneration in a rat calvarial bone defect, Peptides, 46, 136, 10.1016/j.peptides.2013.06.001
Yu, 2018, LL-37 inhibits LPS-induced inflammation and stimulates the osteogenic differentiation of BMSCs via P2X7 receptor and MAPK signaling pathway, Exp. Cell Res., 372, 178, 10.1016/j.yexcr.2018.09.024
Ramos, 2011, Wound healing activity of the human antimicrobial peptide LL37, Peptides, 32, 1469, 10.1016/j.peptides.2011.06.005
Nordström, 2017, Delivery systems for antimicrobial peptides, Adv. Colloid Interface Sci., 242, 17, 10.1016/j.cis.2017.01.005
Gutner, 2009, Saliva enables the antimicrobial activity of LL-37 in the presence of proteases of Porphyromonas gingivalis, Infect. Immun., 77, 5558, 10.1128/IAI.00648-09
Johansson, 1998, Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37, J. Biol. Chem., 273, 3718, 10.1074/jbc.273.6.3718
VanderVen, 2015, Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium's metabolism is constrained by the intracellular environment, PLoS Pathog., 11, 10.1371/journal.ppat.1004679
Sieprawska-Lupa, 2004, Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases, Antimicrob. Agents Chemother., 48, 4673, 10.1128/AAC.48.12.4673-4679.2004
Majchrzykiewicz, 2010, Generic and specific adaptive responses of Streptococcus pneumoniae to challenge with three distinct antimicrobial peptides, bacitracin, LL-37, and nisin, Antimicrob. Agents Chemother., 54, 440, 10.1128/AAC.00769-09
Chakraborty, 2008, Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human β-defensin 1 (HBD-1) expression in the intestinal epithelial cells, Cell Microbiol., 10, 2520, 10.1111/j.1462-5822.2008.01227.x
Malmsten, 2013, Inorganic nanomaterials as delivery systems for proteins, peptides, DNA, and siRNA, Curr. Opin. Colloid Interface Sci., 18, 468, 10.1016/j.cocis.2013.06.002
Huh, 2011, Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era, J. Contr. Release, 156, 128, 10.1016/j.jconrel.2011.07.002
Hajipour, 2012, Antibacterial properties of nanoparticles, Trends Biotechnol., 30, 499, 10.1016/j.tibtech.2012.06.004
Comune, 2017, Antimicrobial peptide-gold nanoscale therapeutic formulation with high skin regenerative potential, J. Contr. Release, 262, 58, 10.1016/j.jconrel.2017.07.007
Rai, 2015, Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery, Int. J. Pharm., 496, 159, 10.1016/j.ijpharm.2015.10.059
Klasen, 2000, A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver, Burns, 26, 131, 10.1016/S0305-4179(99)00116-3
Herzog, 2013, Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface, Part. Fibre Toxicol., 10, 11, 10.1186/1743-8977-10-11
Vignoni, 2014, LL37 peptide@silver nanoparticles: combining the best of the two worlds for skin infection control, Nanoscale, 6, 5725, 10.1039/C4NR01284D
Chen, 2009, Nanolayer biofilm coated on magnetic nanoparticles by using a dielectric barrier discharge glow plasma fluidized bed for immobilizing an antimicrobial peptide, Nanotechnology, 20, 465706, 10.1088/0957-4484/20/46/465706
Wang, 2018, Bioinspired, biocompatible and peptide-decorated silk fibroin coatings for enhanced osteogenesis of bioinert implant, J. Biomater. Sci. Polym. Ed., 29, 1595, 10.1080/09205063.2018.1477316
Shen, 2019, Antibacterial and osteogenesis performances of LL37-loaded titania nanopores in vitro and in vivo, Int. J. Nanomed., 14, 3043, 10.2147/IJN.S198583
Gabriel, 2006, Preparation of LL-37-grafted titanium surfaces with bactericidal activity, Bioconjugate Chem., 17, 548, 10.1021/bc050091v
Vivero-Escoto, 2010, Mesoporous silica nanoparticles for intracellular controlled drug delivery, Small, 6, 1952, 10.1002/smll.200901789
Gultepe, 2010, Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices, Adv. Drug Deliv. Rev., 62, 305, 10.1016/j.addr.2009.11.003
Fadeel, 2010, Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications, Adv. Drug Deliv. Rev., 62, 362, 10.1016/j.addr.2009.11.008
Izquierdo-Barba, 2009, Incorporation of antimicrobial compounds in mesoporous silica film monolith, Biomaterials, 30, 5729, 10.1016/j.biomaterials.2009.07.003
Braun, 2016, Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides, J. Colloid Interface Sci., 475, 161, 10.1016/j.jcis.2016.05.002
Kenawy, 2007, The chemistry and applications of antimicrobial polymers: a state-of-the-art review, Biomacromolecules, 8, 1359, 10.1021/bm061150q
Danhier, 2012, PLGA-based nanoparticles: an overview of biomedical applications, J. Contr. Release, 161, 505, 10.1016/j.jconrel.2012.01.043
Porporato, 2012, Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice, Angiogenesis, 15, 581, 10.1007/s10456-012-9282-0
Cheng, 2007, Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery, Biomaterials, 28, 869, 10.1016/j.biomaterials.2006.09.047
Zhang, 2010, Development of nanoparticles for antimicrobial drug delivery, Curr. Med. Chem., 17, 585, 10.2174/092986710790416290
Chereddy, 2014, PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing, J. Contr. Release, 194, 138, 10.1016/j.jconrel.2014.08.016
Xiong, 2012, Bacteria-responsive multifunctional nanogel for targeted antibiotic delivery, Adv. Mater., 24, 6175, 10.1002/adma.201202847
Saunders, 2009, Microgels: from responsive polymer colloids to biomaterials, Adv. Colloid Interface Sci., 147–148, 251, 10.1016/j.cis.2008.08.008
Nordstrom, 2018, Membrane interactions of microgels as carriers of antimicrobial peptides, J. Colloid Interface Sci., 513, 141, 10.1016/j.jcis.2017.11.014
Abeylath, 2008, Glyconanobiotics: novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis, Bioorg. Med. Chem., 16, 2412, 10.1016/j.bmc.2007.11.052
Nordström, 2019, Degradable dendritic nanogels as carriers for antimicrobial peptides, J. Colloid Interface Sci., 554, 592, 10.1016/j.jcis.2019.07.028
Sun, 2015, Chitosan microparticles ionically cross-linked with poly(γ-glutamic acid) as antimicrobial peptides and nitric oxide delivery systems[J], Biochem. Eng. J., 95, 78, 10.1016/j.bej.2014.11.022
Marletta, 1990, Unraveling the biological significance of nitric oxide, Biofactors, 2, 219
Ghaffari, 2006, Potential application of gaseous nitric oxide as a topical antimicrobial agent, Nitric Oxide, 14, 21, 10.1016/j.niox.2005.08.003
Toppazzini, 2011, Can the interaction between the antimicrobial peptide LL-37 and alginate be exploited for the formulation of new biomaterials with antimicrobial properties?, Carbohydr. Polym., 83, 578, 10.1016/j.carbpol.2010.08.020
Such, 2011, Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications, Chem. Soc. Rev., 40, 19, 10.1039/C0CS00001A
Cassin, 2016, The design of antimicrobial LL37-modified collagen-hyaluronic acid detachable multilayers, Acta Biomater., 40, 119, 10.1016/j.actbio.2016.04.027
Gomes, 2015, Incorporation of antimicrobial peptides on functionalized cotton gauzes for medical applications, Carbohydr. Polym., 127, 451, 10.1016/j.carbpol.2015.03.089
Bulet, 2004, Anti-microbial peptides: from invertebrates to vertebrates, Immunol. Rev., 198, 169, 10.1111/j.0105-2896.2004.0124.x
Yaghmur, 2009, Characterization and potential applications of nanostructured aqueous dispersions, Adv. Colloid Interface Sci., 147–148, 333, 10.1016/j.cis.2008.07.007
Rizwan, 2010, Bicontinuous cubic liquid crystals as sustained delivery systems for peptides and proteins, Expet Opin. Drug Deliv., 7, 1133, 10.1517/17425247.2010.515584
Chen, 2014, Cubic and hexagonal liquid crystals as drug delivery systems, BioMed Res. Int., 2014, 815981
Bunker, 2016, Rational design of liposomal drug delivery systems, a review: combined experimental and computational studies of lipid membranes, liposomes and their PEGylation, Biochim. Biophys. Acta, 1858, 2334, 10.1016/j.bbamem.2016.02.025
Zhang, 2006, How to stabilize phospholipid liposomes (using nanoparticles), Nano Lett., 6, 694, 10.1021/nl052455y
Akbarzadeh, 2013, Liposome: classification, preparation, and applications, Nanoscale Res. Lett., 8, 102, 10.1186/1556-276X-8-102
Raimondo, 2019, Extracellular vesicles as biological shuttles for targeted therapies, Int. J. Mol. Sci., 20, 1848, 10.3390/ijms20081848
Grimaldi, 2016, Lipid-based nanovesicles for nanomedicine, Chem. Soc. Rev., 45, 6520, 10.1039/C6CS00409A
Ron-Doitch, 2016, Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV, J. Contr. Release, 229, 163, 10.1016/j.jconrel.2016.03.025
D'Souza, 2016, Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications, Expet Opin. Drug Deliv., 13, 1257, 10.1080/17425247.2016.1182485
Champion, 2006, Role of target geometry in phagocytosis, Proc. Natl. Acad. Sci. U.S.A., 103, 4930, 10.1073/pnas.0600997103
Gratton, 2008, The effect of particle design on cellular internalization pathways, Proc. Natl. Acad. Sci. U.S.A., 105, 11613, 10.1073/pnas.0801763105
Geng, 2007, Shape effects of filaments versus spherical particles in flow and drug delivery, Nat. Nanotechnol., 2, 249, 10.1038/nnano.2007.70
Johnsson, 2003, Liposomes, disks, and spherical micelles: aggregate structure in mixtures of gel phase phosphatidylcholines and poly(ethylene glycol)-phospholipids, Biophys. J., 85, 3839, 10.1016/S0006-3495(03)74798-5
Edwards, 1997, Effect of polyethyleneglycol-phospholipids on aggregate structure in preparations of small unilamellar liposomes, Biophys. J., 73, 258, 10.1016/S0006-3495(97)78066-4
Reijmar, 2016, Characterizing and controlling the loading and release of cationic amphiphilic peptides onto and from PEG-stabilized lipodisks, Langmuir, 32, 12091, 10.1021/acs.langmuir.6b03012
Agarwal, 2013, Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms, Proc. Natl. Acad. Sci. U.S.A., 110, 17247, 10.1073/pnas.1305000110
Kai-Larsen, 2008, The role of the multifunctional peptide LL-37 in host defense, Front. Biosci., 13, 3760, 10.2741/2964
Karami, 2016, Cubosomes: remarkable drug delivery potential, Drug Discov. Today, 21, 789, 10.1016/j.drudis.2016.01.004
Makowski, 2019, Advances in lipid and metal nanoparticles for antimicrobial peptide delivery, Pharmaceutics, 11, 588, 10.3390/pharmaceutics11110588
Boge, 2016, Lipid-based liquid crystals as carriers for antimicrobial peptides: phase behavior and antimicrobial effect, Langmuir, 32, 4217, 10.1021/acs.langmuir.6b00338
Boge, 2017, Cubosomes post-loaded with antimicrobial peptides: characterization, bactericidal effect and proteolytic stability, Int. J. Pharm., 526, 400, 10.1016/j.ijpharm.2017.04.082
Boge, 2019, Cubosomes for topical delivery of the antimicrobial peptide LL-37, Eur. J. Pharm. Biopharm., 134, 60, 10.1016/j.ejpb.2018.11.009
Gontsarik, 2018, pH-Triggered nanostructural transformations in antimicrobial peptide/oleic acid self-assemblies, Biomater. Sci., 6, 803, 10.1039/C7BM00929A
Gontsarik, 2016, Antimicrobial peptide-driven colloidal transformations in liquid-crystalline nanocarriers, J. Phys. Chem. Lett., 7, 3482, 10.1021/acs.jpclett.6b01622
Boge, 2019, Peptide-loaded cubosomes functioning as an antimicrobial unit against Escherichia coli, ACS Appl. Mater. Interfaces, 11, 21314, 10.1021/acsami.9b01826
Muhlen, 1998, Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism, Eur. J. Pharm. Biopharm., 45, 149, 10.1016/S0939-6411(97)00150-1
Wissing, 2003, Cosmetic applications for solid lipid nanoparticles (SLN), Int. J. Pharm., 254, 65, 10.1016/S0378-5173(02)00684-1
Fumakia, 2016, Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity, Mol. Pharm., 13, 2318, 10.1021/acs.molpharmaceut.6b00099
Lomas, 1996, New insights into the structural basis of alpha 1-antitrypsin deficiency, QJM: J. Assoc. Phys., 89, 807, 10.1093/qjmed/89.11.807
Zhai, 2014, Advances in lipid-based colloid systems as drug carrier for topic delivery, J. Contr. Release, 193, 90, 10.1016/j.jconrel.2014.05.054
Obeidat, 2010, Preservation of nanostructured lipid carriers (NLC), Eur. J. Pharm. Biopharm., 76, 56, 10.1016/j.ejpb.2010.05.001
Garcia-Orue, 2016, LL37 loaded nanostructured lipid carriers (NLC): a new strategy for the topical treatment of chronic wounds, Eur. J. Pharm. Biopharm., 108, 310, 10.1016/j.ejpb.2016.04.006
Bowdish, 2005, Impact of LL-37 on anti-infective immunity, J. Leukoc. Biol., 77, 451, 10.1189/jlb.0704380