Advances in biomaterial production from animal derived waste

Informa UK Limited - Tập 12 Số 1 - Trang 8247-8258 - 2021
Ayon Tarafdar1, Vivek Kumar Gaur2, Neha Rawat3, Pratik Ramesh Wankhade1, Gyanendra Kumar Gaur1, Mukesh Kumar Awasthi4, Narashans Alok Sagar5, Ranjna Sirohi6
1Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
2Environment Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
3Department of Food Science and Technology, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
4College of Natural Resources and Environment, Northwest A&f University, Yangling, Shaanxi Province, China
5Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
6Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Food and Agricultural Organization (FAO). 2019. [cited 2021 Jul 15]. http://www.fao.org/faostat/en/#data/

10.1016/j.envpol.2021.117071

10.1016/j.biortech.2019.122580

Zamri M. F. M. A. Bahru R. Amin R. Khan M. U. A. Abd Razak S. I. Hassan S. A. … & Nayan N. H. M. Waste to health: a review of waste derived materials for tissue engineering. J. Clean. Prod. 2021:125792.

Li J Liu Y Gao Y et al. Preparation and properties of calcium citrate nanosheets for bone graft substitute. Bioengineered. 2016;7(5):376–381.

He M Zhang B Dou Y et al. Fabrication and characterization of electrospun feather keratin/poly (vinyl alcohol) composite nanofibers. RSC Adv. 2017;7(16):9854–9861.

Fagbemi OD Sithole B Tesfaye T. Optimization of keratin protein extraction from waste chicken feathers using hybrid pre-treatment techniques. Sustain Chem Pharm. 2020;17:100267.

Oluba OM Obi CF Akpor OB et al. Fabrication and characterization of keratin starch biocomposite film from chicken feather waste and ginger starch. Sci Rep. 2021;11(1):1–11.

Yin X-C Li F-Y He Y-F et al. Study on effective extraction of chicken feather keratins and their films for controlling drug release. Biomater Sci. 2013;1(5):528–536.

10.1016/j.msec.2018.06.020

10.1080/09205063.2016.1239955

10.1016/j.ijbiomac.2015.07.025

Bansal G, Singh VK, Patil P, et al. Water absorption and thickness swelling characterization of chicken feather fiber and extracted fish residue powder filled epoxy based hybrid biocomposite. Int J Waste Res. 2016;6(3):1–6.

Kumar A, Bansal G, Singh VK. Characterization of mechanical strength of epoxy hybrid composite reinforced with chicken feather fiber and residue powder extracted from rohu fish scale. Int J Eng Res Technol. 2019;8:181–2278.

Asra DY Sari YW Dahlan K. Effect of microwave irradiation on the synthesis of carbonated hydroxyapatite (CHA) from chicken eggshell. In: IOP Conference Series: Earth and Environmental Science; IOP Publishing Bogor Indonesia; 2018. p. 12016.

McDougal T 2020. Eggs: global egg production continues to rise. Poultry World. [cited 2021 Sep 5]. https://www.poultryworld.net/Eggs/Articles/2020/6/Global-egg-production-continues-to-rise-604164E/

10.1177/08853282211024040

10.1016/j.ijbiomac.2019.08.156

10.1016/j.scp.2019.100166

10.47895/amp.vi0.1828

10.1021/acsomega.7b01855

Odusote JK, Danyuo Y, Baruwa AD, et al. Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants. J Appl Biomater Funct Mater. 2019;17(2):2280800019836829.

10.1007/s13399-020-01119-9

10.4103/2155-8213.140606

10.1007/s11051-010-9944-z

10.1109/ICICI-BME.2011.6108637

10.1016/S0142-9612(03)00410-1

10.1515/rams-2018-0002

10.1089/sur.2012.123

10.1016/B978-1-4160-3274-8.50005-2

10.1111/j.1365-2559.2008.03190.x

Ratner BD, Hoffmann AS, Schoen FJ, et al. Biomaterials science: an introduction to materials in medicine. 2nd ed. London (UK): Elsevier Academic Press; 2004.

Hench LL, Best S. Ceramics, glasses and glassceramics. In: Ratner BD, Hoffmann AS, Schoen FJ, et al, editors. Biomaterials science: an introduction to materials in medicine. London (UK): Elsevier Academic Press; 2004, pp. 289-305.

Stefanini M, Bianchelli D, Sangiorgi M. Porcine-derived acellular dermal collagen matrix and enamel matrix derivative for the treatment of infrabony defect in the esthetic area. Plast Aesthetic Res. 2021;8: 15.

10.1902/jop.2006.060181

10.2217/rme.12.6

Perrotti V, Nicholls BM. Resorption pattern of a porcine-derived bone substitute. J Osseointegrat. 2009;1(1):22–28.

10.1021/acsbiomaterials.9b01837

10.1016/j.jeurceramsoc.2006.04.016

Chattopadhyay P, Pal S, Wahi AK, et al. Synthesis of crystalline hydroxyapetite from coral (Gergonacea sp) and cytotoxicity evaluation. Trend Biomater Artific Organs. 2007;20(2):139–142.

Akyurt N, Yetmez M, Karacayli U, et al. A new natural biomaterial: sheep dentine derived hydroxyapatite. In: Key engineering materials. Vol. 493. Trans Tech Publications Ltd., Switzerland; 2012. p. 281–286.

Rocha JHG Lemos AF Agathopoulos S et al. Scaffolds for bone restoration from cuttlefish. Bone. 2005;37:850–857.

10.1016/j.jeurceramsoc.2005.12.011

10.1163/092050610X551943

10.1080/10584587.2017.1368642

10.1016/j.biortech.2009.10.015

10.1007/s10532-010-9398-0

10.1016/j.ijbiomac.2014.03.049

10.3390/microorganisms7110578

10.1016/j.renene.2019.06.030

10.1016/j.desal.2005.11.015

10.1016/j.jbiosc.2009.10.012

Mehta V, Patel E, Vaghela K, et al. Production of biopolymer from dairy waste: an approach to alternate synthetic plastic. Int J Res Biosci. 2017;6(4):1–8.

10.1080/09593330.2017.1291759

10.1016/j.jclepro.2021.125948

10.1016/B978-0-12-816897-4.00006-0

10.1016/j.foodchem.2013.05.058

10.1007/s13197-015-1731-5

10.1016/j.jff.2016.03.026

10.1016/j.lwt.2017.04.073

10.1021/jf072669w

10.1016/j.fbio.2018.03.003

Londoño-Restrepo SM, Jeronimo-Cruz R, Rubio-Rosas E, et al. The effect of cyclic heat treatment on the physicochemical properties of bio hydroxyapatite from bovine bone. J Mater Sci. 2018;29(5):1–15.

Malla KP, Regmi S, Nepal A, et al. Extraction and characterization of novel natural hydroxyapatite bioceramic by thermal decomposition of waste ostrich bone. Int J Biomater. 2020;2020.

10.1016/S0167-577X(03)00363-X