Advances in alternative cementitious binders

Cement and Concrete Research - Tập 41 Số 12 - Trang 1232-1243 - 2011
Maria Juenger1, Frank Winnefeld2, John L. Provis3, Jason H. Ideker4
1University of Texas at Austin, Department of Civil, Architectural and Environmental Engineering, 1 University Station C 1748, Austin, Texas 78712, USA
2Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
3University of Melbourne, Department of Chemical and Biomolecular Engineering, Parkville, Victoria 3010, Australia
4Oregon State University, School of Civil & Construction Engineering, 220 Owen Hall, Corvallis, Oregon 97331, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

U.S. Geological Survey, 2009

Alcorn, 2003, Embodied energy and CO2 coefficients for NZ building materials

Damtoft, 2008, Sustainable development and climate change initiatives, Cem. Concr. Res., 38, 115, 10.1016/j.cemconres.2007.09.008

ASTM C 150, 2009

ASTM C 1157, 2009

ASTM C 1600, 2009

EN197-1, 2007

EN 206-1, 2005

Scrivener, 1998, Calcium aluminate cements, 713

1997, Calcium aluminate cements in construction: a re-assessment

Scrivener, 2001, Historical and present day applications of calcium aluminate cements, 3

Bushnell-Watson, 1990, On the cause of the anomalous setting behaviour with respect to temperature of calcium aluminate cements, Cem. Concr. Res., 20, 677, 10.1016/0008-8846(90)90002-F

George, 1983, Industrial aluminous cements, 415

2008

Pöllmann, 2008, Cryo-SEM-FEG investigations on calcium aluminate cements, 123

J.H. Ideker, Early-age behavior of calcium aluminate cement systems, Ph.D. Thesis, University of Texas, Austin, 2008.

Ideker, 2008, Early-age properties of calcium aluminate cement concrete with rigid cracking and free shrinkage frames: isothermal testing, 141

Lamberet, 2008, Field investigations of high performance calcium aluminate mortar for wastewater applications, 269

Alexander, 2008, Experiences with a full-scale experimental sewer made with CAC and other cementitious binders in Virginia, South Africa, 279

Kighelman, 2008, Kinetics of two types of flooring mortar: PC dominated vs. CAC dominated, 567

C. Gosselin, Microstructural development of calcium aluminate cement based systems with and without supplementary cementitious materials, Labratoire des Materiaux de Construction, Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne, 2009.

A. Klein, Calciumaluminosulfate and expansive cements containing same, US Patent No. 3, 155, 526, 1963, 4 pp.

Glasser, 2001, High-performance cement matrices based on calcium sulfoaluminate–belite compositions, Cem. Concr. Res., 21, 1881, 10.1016/S0008-8846(01)00649-4

Su, 1992, Development in non-Portland cements, vol. I, 317

Su, 1997, Preliminary study on the durability of sulfo/ferro-aluminate cements

Wang, 1994, The third cement series in China, World Cem., 25, 6

Wang, 1996, Hydration of calcium sulphoaluminate cements, Adv. Cem. Res., 8, 127, 10.1680/adcr.1996.8.31.127

Zhang, 1999, Development of the use of sulfo- and ferroaluminate cements in China, Adv. Cem. Res., 11, 15, 10.1680/adcr.1999.11.1.15

L. Zhang, Microstructure and performance of calcium sulfoaluminate cements, Ph.D. thesis, University of Aberdeen, 2000.

Sharp, 1999, Calcium sulfoaluminate cements—low-energy cements, special cements or what?, Adv. Cem. Res., 11, 3, 10.1680/adcr.1999.11.1.3

Albino, 1996, Potential application of ettringite generating systems for hazardous waste stabilization, J. Hazard. Mater., 51, 241, 10.1016/S0304-3894(96)01828-6

Cau Dit Coumes, 2009, Calcium sulfoaluminate cement blended with OPC: a potential binder to encapsulate low-level radioactive slurries of complex chemistry, Cem. Concr. Res., 39, 740, 10.1016/j.cemconres.2009.05.016

Luz, 2006, Use of sulfoaluminate cement and bottom ash in the solidification/stabilization of galvanic sludge, J. Hazard. Mater., 136, 837, 10.1016/j.jhazmat.2006.01.020

Peysson, 2005, Immobilization of heavy metals by calcium sulfoaluminate cement, Cem. Concr. Res., 35, 2261, 10.1016/j.cemconres.2005.03.015

Zhou, 2006, An alternative to Portland cement for waste encapsulation—the calcium sulfoaluminate cement system, J. Hazard. Mater., 136, 120, 10.1016/j.jhazmat.2005.11.038

Gartner, 2004, Industrially interesting approaches to “low-CO2” cements, Cem. Concr. Res., 34, 1489, 10.1016/j.cemconres.2004.01.021

Ali, 1994, Studies on the formation kinetics of calcium sulphoaluminate, Cem. Concr. Res., 24, 715, 10.1016/0008-8846(94)90196-1

Su, 1992, Research on the chemical composition and microstructures of sulpho-aluminate cement clinker, vol. II, 94

Arjunan, 1999, Sulfoaluminate–belite cement from low-calcium fly ash and sulfur rich and other industrial by-products, Cem. Concr. Res., 29, 1305, 10.1016/S0008-8846(99)00072-1

Beretka, 1993, Hydraulic behaviour of calcium sulfoaluminate-based cements derived from industrial process wastes, Cem. Concr. Res., 23, 1205, 10.1016/0008-8846(93)90181-8

Sahu, 1994, Preparation of sulphoaluminate belite cement from fly ash, Cem. Concr. Res., 24, 1065, 10.1016/0008-8846(94)90030-2

Sherman, 1995, Long-term behaviour of hydraulic binders based on calcium sulfoaluminate and calcium sulfosilicate, Cem. Concr. Res., 25, 113, 10.1016/0008-8846(94)00119-J

Sahu, 1993, Phase compatibility in the system CaO–SiO2–Al2O3–Fe2O3–SO3 referred to sulphoaluminate belite cement clinker, Cem. Concr. Res., 23, 1331, 10.1016/0008-8846(93)90070-P

Li, 2007, Formation and hydration of low CO2 cements based on belite, calcium sulfoaluminate and calcium aluminoferrite

Janotka, 1999, An experimental study on the upgrade of sulfoaluminate–belite cement systems by blending with Portland cement, Adv. Cem. Res., 11, 35, 10.1680/adcr.1999.11.1.35

Janotka, 2003, The hydration phase and pore structure formation in the blends of sulfoaluminate–belite cement with Portland cement, Cem. Concr. Res., 33, 489, 10.1016/S0008-8846(02)00994-8

Paglia, 2001, Hydration, strength, and microstructural development of high early-strength (C4A3S) activated burnt oil shale-based cement system, ACI Mater. J., 98, 379

Pelletier, 2010, The ternary system Portland cement–calcium sulphoaluminate clinker–anhydrite: hydration mechanism and mortar properties, Cem. Concr. Compos., 32, 497, 10.1016/j.cemconcomp.2010.03.010

Péra, 2004, New applications of calcium sulfoaluminate cements, Cem. Concr. Res., 34, 671, 10.1016/j.cemconres.2003.10.019

Hanic, 1989, Mechanism of hydration reactions in the system C4A3 S̄–C S̄–CaO–H2O referred to hydration of sulphoaluminate cements, Cem. Concr. Res., 19, 671, 10.1016/0008-8846(89)90038-0

Kaprálik, 1989, Phase relation in the subsystem C4A3 S̄–C S̄ H2–CH–H2O of the system CaO–Al2O3–C S̄–H2O referred to hydration of calcium sulphoaluminate cement, Cem. Concr. Res., 19, 89, 10.1016/0008-8846(89)90069-0

Palou, 1996, Hydration in the system C4A3 S̄–C S̄ H2–CH, J. Therm. Anal., 46, 557, 10.1007/BF02135035

Song, 2002, Direct synthesis and hydration of calcium aluminosulfate (Ca4Al6O16S), J. Am. Ceram. Soc., 85, 535, 10.1111/j.1151-2916.2002.tb00129.x

Winnefeld, 2010, Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye'elimite, J. Therm. Anal. Calorim., 101, 949, 10.1007/s10973-009-0582-6

Alaoui, 2007, Experimental studies of hydration mechanisms of sulfoaluminate clinker

Quillin, 2001, Performance of belite–sulfoaluminate cements, Cem. Concr. Res., 31, 1341, 10.1016/S0008-8846(01)00543-9

Winnefeld, 2009, Influence of calcium sulfate and calcium hydroxide on the hydration of calcium sulfoaluminate clinker, ZKG Int., 62, 42

Winnefeld, 2010, Hydration of calcium sulfoaluminate cements—experimental findings and thermodynamic modelling, Cem. Concr. Res., 40, 1239, 10.1016/j.cemconres.2009.08.014

Zhang, 2002, Hydration of calcium sulfoaluminate cement at less than 24h, Adv. Cem. Res., 14, 141, 10.1680/adcr.2002.14.4.141

Smrčková, 1996, Application of conduction calorimetry for study of the reactivity of C2S in the system C2S–C4A3 S̄–C S̄–H, J. Therm. Anal., 46, 597, 10.1007/BF02135039

Bernardo, 2006, A porosimetric study of calcium sulfoaluminate cement pastes cured at early ages, Cem. Concr. Res., 36, 1042, 10.1016/j.cemconres.2006.02.014

Lura, 2010, Simultaneous measurements of heat of hydration and chemical shrinkage on hardening cement pastes, J. Therm. Anal. Calorim., 101, 925, 10.1007/s10973-009-0586-2

Majling, 1985, The influence of anhydrite reactivity upon hydration of calcium sulphoaluminate cement clinker, Thermochim. Acta, 92, 349, 10.1016/0040-6031(85)85888-3

Sahu, 1991, Hydration behaviour of sulphoaluminate belite cement in the presence of various calcium sulphates, Thermochim. Acta, 175, 45, 10.1016/0040-6031(91)80244-D

Odler, 2000

Andac, 1999, Pore solution composition of calcium sulfoaluminate cement, Adv. Cem. Res., 11, 23, 10.1680/adcr.1999.11.1.23

Zhang, 2005, Investigation of the microstructure and carbonation of C S̄ A-based concretes removed from service, Cem. Concr. Res., 35, 2252, 10.1016/j.cemconres.2004.08.007

Duxson, 2007, The role of inorganic polymer technology in the development of ‘green concrete’, Cem. Concr. Res., 37, 1590, 10.1016/j.cemconres.2007.08.018

Duxson, 2007, Geopolymer technology: the current state of the art, J. Mater. Sci., 42, 2917, 10.1007/s10853-006-0637-z

Purdon, 1940, The action of alkalis on blast-furnace slag, J. Soc. Chem. Ind. Trans. Commun., 59, 191

Wang, 1995, Alkali-activated slag cement and concrete: a review of properties and problems, Adv. Cem. Res., 27, 93, 10.1680/adcr.1995.7.27.93

Krivenko, 1994, Alkaline cements, 11

Shi, 2006

van Deventer, 2010, Chemical research and climate change as drivers in the commercial adoption of alkali activated materials, Waste Biomass Valoriz, 1, 145, 10.1007/s12649-010-9015-9

Husbands, 1994, Performance of concretes proportioned with pyrament blended cement

Kriven, 2006, Geopolymers for structural ceramic applications

Davidovits, 2002, 30years of successes and failures in geopolymer applications. Market trends and potential breakthroughs

Duxson, 2008, Designing precursors for geopolymer cements, J. Am. Ceram. Soc., 91, 3864, 10.1111/j.1551-2916.2008.02787.x

Provis, 2009, Activating solution chemistry for geopolymers, 50

Provis, 2007, Geopolymerisation kinetics. 2. Reaction kinetic modelling, Chem. Eng. Sci., 62, 2318, 10.1016/j.ces.2007.01.028

Yip, 2008, Effect of calcium silicate sources on geopolymerisation, Cem. Concr. Res., 38, 554, 10.1016/j.cemconres.2007.11.001

Yip, 2008, Carbonate mineral addition to metakaolin-based geopolymers, Cem. Concr. Compos., 30, 979, 10.1016/j.cemconcomp.2008.07.004

Richardson, 1994, The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C–S–H) paste, Cem. Concr. Res., 24, 813, 10.1016/0008-8846(94)90002-7

Wang, 1995, Hydration products of alkali-activated slag cement, Cem. Concr. Res., 25, 561, 10.1016/0008-8846(95)00045-E

Davidovits, 1991, Geopolymers—inorganic polymeric new materials, J. Therm. Anal., 37, 1633, 10.1007/BF01912193

Bell, 2008, Atomic structure of a cesium aluminosilicate geopolymer: a pair distribution function study, Chem. Mater., 20, 4768, 10.1021/cm703369s

Bell, 2008, X-ray pair distribution function analysis of a metakaolin-based, KAlSi2O6·5.5H2O inorganic polymer (geopolymer), J. Mater. Chem., 18, 5974, 10.1039/b808157c

Fernández-Jiménez, 2008, Alkaline activation of metakaolin–fly ash mixtures: obtain of zeoceramics and zeocements, Microporous Mesoporous Mater., 108, 41, 10.1016/j.micromeso.2007.03.024

Rahier, 1996, Low-temperature synthesized aluminosilicate glasses. 1. Low-temperature reaction stoichiometry and structure of a model compound, J. Mater. Sci., 31, 71, 10.1007/BF00355128

Duxson, 2005, The effect of alkali cations on aluminum incorporation in geopolymeric gels, Ind. Eng. Chem. Res., 44, 832, 10.1021/ie0494216

García-Lodeiro, 2008, FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H, J. Sol-Gel. Sci. Technol., 45, 63, 10.1007/s10971-007-1643-6

Provis, 2005, Do geopolymers actually contain nanocrystalline zeolites?—A reexamination of existing results, Chem. Mater., 17, 3075, 10.1021/cm050230i

Provis, 2009, Geopolymer synthesis kinetics, 118

Fernández-Jiménez, 1997, Alkali-activated slag cements: kinetic studies, Cem. Concr. Res., 27, 359, 10.1016/S0008-8846(97)00040-9

Puertas, 2004, Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate, Cem. Concr. Res., 34, 139, 10.1016/S0008-8846(03)00254-0

Gruskovnjak, 2006, Hydration of alkali-activated slag: comparison with ordinary Portland cement, Adv. Cem. Res., 18, 119, 10.1680/adcr.2006.18.3.119

McCarter, 1999, The early hydration of alkali-activated slag: developments in monitoring techniques, Cem. Concr. Compos., 21, 277, 10.1016/S0958-9465(99)00007-4

Fernández-Jiménez, 2006, The role played by the reactive alumina content in the alkaline activation of fly ashes, Microporous Mesoporous Mater., 91, 111, 10.1016/j.micromeso.2005.11.015

Rees, 2007, In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation, Langmuir, 23, 9076, 10.1021/la701185g

Rees, 2007, Attenuated total reflectance Fourier transform infrared analysis of fly ash geopolymer gel ageing, Langmuir, 23, 8170, 10.1021/la700713g

Duxson, 2005, Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids Surf. A, 269, 47, 10.1016/j.colsurfa.2005.06.060

R.R. Lloyd, The durability of inorganic polymer cements, Ph.D. Thesis, University of Melbourne, 2008.

Clark, 1995, A comparison of laboratory, synchrotron and neutron diffraction for the real time study of cement hydration, Cem. Concr. Res., 25, 639, 10.1016/0008-8846(95)00052-E

Provis, 2007, Direct measurement of the kinetics of geopolymerisation by in-situ energy dispersive x-ray diffractometry, J. Mater. Sci., 42, 2974, 10.1007/s10853-006-0548-z

Provis, 2007, Geopolymerisation kinetics. 1. In situ energy dispersive x-ray diffractometry, Chem. Eng. Sci., 62, 2309, 10.1016/j.ces.2007.01.027

Provis, 2008, Geopolymerisation kinetics. 3. Effects of Cs and Sr salts, Chem. Eng. Sci., 63, 4480, 10.1016/j.ces.2008.06.008

Lu, 2008, Mineralogical characterizations and reaction path modeling of the pozzolanic reaction of fly ash–lime systems, J. Am. Ceram. Soc., 91, 955, 10.1111/j.1551-2916.2007.02193.x

Brouwers, 2002, Fly ash reactivity: extension and application of a shrinking core model and thermodynamic approach, J. Mater. Sci., 37, 2129, 10.1023/A:1015206305942

Lothenbach, 2007, Hydration of alkali-activated slag: thermodynamic modelling, Adv. Cem. Res., 19, 81, 10.1680/adcr.2007.19.2.81

Chen, 2007, The hydration of slag, part 1: reaction models for alkali-activated slag, J. Mater. Sci., 42, 428, 10.1007/s10853-006-0873-2

Provis, 2009, Designing green construction materials through reaction engineering

Xu, 2008, Characterization of aged slag concretes, ACI Mater. J., 105, 131

Ilyin, 1994, Durability of materials based on slag–alkaline binders, 789

Douglas, 1992, Properties and durability of alkali-activated slag concrete, ACI Mater. J., 89, 509

Lloyd, 2010, Pore solution composition and alkali diffusion in inorganic polymer cement, Cem. Concr. Res., 40, 1386, 10.1016/j.cemconres.2010.04.008

Puertas, 2003, Effect of superplasticisers on the behaviour and properties of alkaline cements, Adv. Cem. Res., 15, 23, 10.1680/adcr.2003.15.1.23

Palacios, 2009, Adsorption of superplasticizer admixtures on alkali-activated slag pastes, Cem. Concr. Res., 39, 670, 10.1016/j.cemconres.2009.05.005

H. Kühl, Verfahren zur Herstellung von Zement aus Hochofenschlacke, German Patent No. 237777, December 23, 1908.

Kühl, 1952

Novak, 2005, New knowledge regarding the supersulphated cement Slagstar, ZKG Int., 58, 70

BS 4248, Supersulfated cement, British Standards Institution, 2004.

DIN 4210, Sulfathüttenzement, Deutsches Institut für Normung e. V., 1959, withdrawn 1970.

Cerulli, 2003, Durability of traditional plasters with respect to blast furnace slag-based plaster, Cem. Concr. Res., 33, 1375, 10.1016/S0008-8846(03)00072-3

Trautmann, 1994, Development of a mortar consisting of slag, gypsum and Portland cement for injection into multiple-leaf masonry, part 1: optimizing the mortar, Zem. Kalk Gips, 47, 219

Winnefeld, 1998, Slag-based mortars for the restoration of historical brickwork masonry, 207

O'Rourke, 2009, Development of calcium sulfate-ggbs-Portland cement binders, Constr. Build. Mater., 23, 340, 10.1016/j.conbuildmat.2007.11.016

Novak, 2004, Practical experience with a new type of supersulfated cement, Cem. Int., 4, 116

EN 15743, Supersulfated cement-composition, specification and conformity criteria, European Committee for Standardization (CEN), Brussels, Belgium, 2010.

Bijen, 1981, Supersulphated cement from blastfurnace slag and chemical gypsum available in the Netherlands and neighbouring countries, Cem. Concr. Res., 11, 302, 10.1016/0008-8846(81)90104-6

Dutta, 1990, Activation of low lime high alumina granulated blast furnace slag by anhydrite, Cem. Concr. Res., 20, 711, 10.1016/0008-8846(90)90005-I

Erdem, 1993, The mechanical properties of supersulphated cement containing phosphogypsum, Cem. Concr. Res., 23, 115, 10.1016/0008-8846(93)90141-U

Gruskovnjak, 2008, Hydration mechanisms of super sulphated slag cements, Cem. Concr. Res., 38, 983, 10.1016/j.cemconres.2008.03.004

Matschei, 2005, Hydration behaviour of sulphate-activated slag cements, Adv. Cem. Res., 18, 167, 10.1680/adcr.2005.17.4.167

Mehrotra, 1982, Plaster of Paris activated supersulphated slag cement, Cem. Concr. Res., 12, 463, 10.1016/0008-8846(82)90061-8

Mun, 2007, Basic properties of non-sintering cement using phosphogypsum and waste lime as activator, Constr. Build. Mater., 21, 1342, 10.1016/j.conbuildmat.2005.12.022

Singh, 2002, Calcium sulfate hemihydrate activated low heat sulfate resistant cement, Constr. Build. Mater., 16, 181, 10.1016/S0950-0618(01)00026-5

Taha, 1981, Physico-chemical properties of supersulphated cement pastes, Zem. Kalk Gips, 34, 315

Grounds, 1994, The influence of temperature and different storage conditions on the stability of supersulphated cement, J. Therm. Anal. Calorim., 41, 687, 10.1007/BF02549342

Smolczyk, 1965, Hydration products of cements with high contents of blastfurnace slag, Zem. Kalk Gips, 18, 238

Midgley, 1971, The micro structure of hydrated super sulphated cement, Cem. Concr. Res., 1, 101, 10.1016/0008-8846(71)90086-X

Garci Juenger, 2006, In situ imaging of ground granulated blast furnace slag hydration, J. Mater. Sci., 41, 7074, 10.1007/s10853-006-0941-7

El-Didamony, 1982, Sulphate and chloride resistance of supersulphated cement pastes, Zem. Kalk Gips, 35, 378

Grounds, 2003, Resistance of supersulfated cement to strong sulfate solutions, J. Therm. Anal. Calorim., 72, 181, 10.1023/A:1023928021602

Jackson, 1998, Portland cement: classification and manufacture, 83

Malami, 1996, Hydraulic behaviour of non-expansive sulfoaluminate cement, vol. 3, 281

Ghosh, 1991, 121