Advances in Understanding Environmental Risks of Red Mud After the Ajka Spill, Hungary
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adam J, Banvolgyi G, Dura G, Grenerczy G, Gubek N, Gutper I, Simon G, Szegfalvi Z, Szekacs A, Szepvolgyi J, Ujlaky E (2011) The Kolontár report. Causes and lessons from the red mud disaster; Greens/European Free Alliance Parliamentary Group in the European Parliament and LMP—politics can be different: Budapest; p 156
Evans K (2015) Success and challenges in the management and use of bauxite residue. In: Pontikes Y
(ed) Bauxite residue valorisation and best practices conferences, Leuven, Belgium, October 2015, pp 113-128
World Aluminium and the European Aluminium Association (2015) Bauxite residue management: best practice. http://bauxite.world-aluminium.org/uploads/media/Bauxite_Residue_Management_-_Best_Practice__English_.pdf . Accessed 13 Jan 2016
ETN Red Mud (2015) ETN for zero-waste valorisation of bauxite residue (red mud). http://etn.redmud.org/ . Accessed 13 Jan 2016
Balomenos E, Panias D, Pontikes Y (2015) Mud2metal: a holistic flow sheet for the bauxite residue valorisation. In: Pontikes Y
(ed) Bauxite residue valorisation and best practices conferences, Leuven, Belgium, October 2015, pp 129-136
Anton ÁD, Klebercz O, Magyar Á, Burke IT, Jarvis AP, Gruiz K, Mayes WM (2014) Geochemical recovery of the Torna-Marcal river system after the Ajka red mud spill, Hungary. Environ Sci Proc Impacts 16:2677–2685
Rédey Á, Yuzhakova T, Utasi A, Kovács Z, Lakó J, Kovács J et al (2013) Lessons learnt from an environmental catastrophe in Hungary. Glob J Adv Pure Appl Sci 1:520–531
Gruiz K, Feigl V, Klebercz O, Anton A, Vaszita E (2012) Environmental risk assessment of red mud contaminated land in Hungary. In: GeoCongress, pp 4156–4165
Uzinger N, Anton ÁD, Ötvös K, Tamás P, Anton A (2015) Results of the clean-up operation to reduce pollution on flooded agricultural fields after the red mud spill in Hungary. Environ Sci Pollut Res 22:1–9
Burai P, Smailbegovic A, Lénárt C, Berke J, Milics G, Tomor T, Bíró T (2011) Preliminary analysis of red mud spill based on aerial imagery. Acta Geogr Debrecina Landsc Environ 5(1):47–57
Burke IT, Mayes WM, Peacock CL, Brown AP, Jarvis AP, Gruiz K (2012) Speciation of arsenic, chromium, and vanadium in red mud samples from the Ajka spill site, Hungary. Environ Sci Technol 46:3085–3092
Burke IT, Peacock CL, Lockwood CL, Stewart DI, Mortimer RJG, Ward MB, Renforth P, Gruiz K, Mayes WM (2013) Behavior of aluminum, arsenic, and vanadium during the neutralization of red mud leachate by HCl, gypsum, or seawater. Environ Sci Technol 47:6527–6535
Gelencsér A, Kováts N, Turóczi B, Rostási A, Hoffer A, Imre K, Nyirő-Kósa I, Csákberényi-Malasics D, Tóth A, Czitrovszky A, Nagy A (2011) The red mud accident in Ajka (Hungary): characterization and potential health effects of fugitive dust. Environ Sci Technol 45(4):1608–1615
Czop M, Motyka J, Sracek O, Szuwarzynski M (2011) Geochemistry of the hyperalkaline Gorka pit lake (pH > 13) in the Chrzanow region, Southern Poland. Water Air Soil Pollut 214(1–4):423–434
Mayes WM, Jarvis AP, Burke IT, Walton M, Feigl V, Klebercz O, Gruiz K (2011) Dispersal and attenuation of trace contaminants downstream of the Ajka bauxite residue (red mud) depository failure, Hungary. Environ Sci Technol 45(5147–5155):2011
Ruyters S, Mertens J, Vassilieva E, Dehandschutter B, Poffijn A, Smolders E (2011) The red mud accident in Ajka (Hungary): plant toxicity and trace metal bioavailability in red mud contaminated soil. Environ Sci Technol 45(4):1616–1622
Lehoux AP, Lockwood CL, Mayes WM, Stewart DI, Mortimer RJ, Gruiz K, Burke IT (2013) Gypsum addition to soils contaminated by red mud: implications for aluminium, arsenic, molybdenum and vanadium solubility. Environ Geochem Health 35(5):643–656
Lockwood CL, Mortimer RJG, Stewart DI, Mayes WM, Peacock CL, Polya DA, Lythgoe PR, Lehoux AP, Gruiz K, Burke IT (2014) Mobilisation of arsenic from bauxite residue (red mud) affected soils: effect of pH and redox conditions. Appl Geochem 51:268–277
Milačič R, Zuliani T, Ščančar J (2012) Environmental impact of toxic elements in red mud studied by fractionation and speciation procedures. Sci Total Environ 426:359–365
Anton A, Rékási M, Uzinger N, Széplábi G, Makó A (2012) Modelling the potential effects of the Hungarian red mud disaster on soil properties. Water Air Soil Pollut 223:5175–5188
Rékási M, Feigl V, Uzinger N, Gruiz K, Makó A, Anton A (2013) Effects of leaching from alkaline red mud on soil biota: modelling the conditions after the Hungarian red mud disaster. Chem Ecol 29(8):709–723
Lockwood CL, Stewart DI, Mortimer RJG, Mayes WM, Jarvis AP, Gruiz K, Burke IT (2015) Leaching of copper and nickel in soil-water systems contaminated by bauxite residue (red mud) from Ajka, Hungary: the importance of soil organic matter. Environ Sci Pollut Res 22:10800–10810
Ujaczki É, Klebercz O, Feigl V, Molnár M, Magyar Á, Uzinger N, Gruiz K (2015) Environmental toxicity assessment of the spilled Ajka red mud in soil microcosms for its potential utilisation as soil ameliorant. Period Polytech Chem Eng 59(4):253–261
Somlai J, Jobbagy V, Kovacs J, Tarján S, Kovács T (2008) Radiological aspects of the usability of red mud as building material additive. J Hazard Mater 150(3):541–545
Kovács T, Sas Z, Jobbágy V, Csordás A, Szeiler G, Somlai J (2013) Radiological aspects of red mud disaster in Hungary. Acta Geophys 61(4):1026–1037
Gundy S, Farkas G, Székely G, Kásler M (2013) No short-term cytogenetic consequences of Hungarian red mud catastrophe. Mutagenesis 28:1–5
Schaff Z (2011) The health damage effects of red mud. In: Presentation at the conference of red mud disaster: consequences and lessons, organized by the Hungarian Academy of Sciences and the National Directorate for Disaster Management, March 1, 2011
Czövek D, Novák Z, Somlai C, Asztalos T, Tiszlavicz L, Bozóki Z, Ajtai T, Utry N, Filep A, Bari F, Peták F (2012) Respiratory consequences of red sludge dust inhalation in rats. Toxicol Lett 209(113–120):2012
Hungarian Academy of Sciences (2010). Red sludge disaster: a summary of damage prevention and the long-term interventions
Vass M, Révay Á, Kucserka T, Hubai K, Üveges V, Kovács K, Padisák J (2013) Aquatic hyphomycetes as survivors and/or first colonizers after a red sludge disaster in the Torna stream, Hungary. Int Rev Hydrobiol 98(4):217–224
Erős T, Takács P, Czeglédi I, Sály P, Specziár A (2015) Taxonomic-and trait-based recolonization dynamics of a riverine fish assemblage following a large-scale human-mediated disturbance: the red mud disaster in Hungary. Hydrobiologia 758:1–15
Wilkie MP, Wood CM (1996) The adaptations of fish to extremely alkaline environments. Comp Biochem Physiol B 113(4):665–673
Scholl K, Szovenyi G (2011) Planktonic rotifer assemblages of the Danube river at Budapest after the red sludge pollution in Hungary. Bull Environ Contam Toxicol 87:124–128
Kucserka T, Karádi-Kovács MK, Vass G, Selmeczy G, Hubai K, Üveges V, Kacsala I, Törő N, Padisák J (2014) Leaf litter decomposition in Torna stream before and after a red mud disaster. Acta Biol Hung 65(1):96–106
Klebercz O, Mayes WM, Anton ÁD, Feigl V, Jarvis AP, Gruiz K (2012) Ecotoxicity of fluvial sediments downstream of the Ajka red mud spill, Hungary. J Environ Monitor 14:2063–2071
Zacháry D, Jordan G, Völgyesi P, Bartha A, Szabó C (2015) Urban geochemical mapping for spatial risk assessment of multisource potentially toxic elements—a case study in the city of Ajka, Hungary. J Geochem Explor 158:186–200
Misik M, Burke IT, Reismuller M, Pichler C, Rainer B, Misikova K, Mayes WM, Knasmueller S (2014) Red mud a byproduct of aluminum production contains soluble vanadium that causes genotoxic and cytotoxic effects in higher plants. Sci Total Environ 493:883–890
Winkler D (2014) Collembolan response to red mud pollution in Western Hungary. Appl Soil Ecol 83:219–229
Gomes HI, Mayes WM, Rogerson M, Stewart DI, Burke IT (2016) Alkaline residues and the environment: a review of impacts, management practices and opportunities. J Clean Prod 112:3571–3582
Reeves HJ, Wealthall G, Younger PL (2011) Advisory visit to the bauxite processing tailings dam near Ajka, Vesprém County, Western Hungary. In: British Geological Survey, Keyworth, UK. Open Report OR/11/006
Renforth P, Mayes WM, Jarvis AP, Burke IT, Manning DAC, Gruiz K (2012) Contaminant mobility and carbon sequestration downstream of the Ajka (Hungary) red mud spill: the effects of gypsum dosing. Sci Total Environ 421–422:253–259
Courtney RG, Timpson JP (2004) Reclamation of fine fraction bauxite processing residue (red mud) amended with coarse fraction residue and gypsum. Water Air Soil Pollut 164(1–4):91–102
Courtney RG, Kirwan L (2012) Gypsum amendment of alkaline bauxite residue—plant available aluminium and implications for grassland restoration. Ecol Eng 42:279–282
Gyuricza C, Junek CN, Csuzi S (2012) Landscape remediation after the red mud disaster in Hungary with short rotation coppice. Hung Agric Res 21(3):10–13
Alshaal T, Domokos-Szabolcsy É, Márton L, Czakó M, Kátai J, Balogh P, Elhawat N, El-Ramady H, Fári M (2013) Phytoremediation of bauxite-derived red mud by giant reed. Environ Chem Lett 11:295–302
Nagy AS, Szabo J, Vass I (2013) Trace metal and metalloid levels in surface water of Marcal River before and after the Ajka red mud spill, Hungary. Environ Sci Pollut Res 20:7603–7614
Hudson-Edwards KA, Macklin MG, Jamieson HE, Brewer PA, Coulthard TJ, Howard AJ, Turner JN (2003) The impact of tailings dam spills and clean-up operations on sediment and water quality in river systems: the Rıos Agrio-Guadiamar, Aznalcóllar, Spain. Appl Geochem 18(2):221–239
NYUDUVIZIG, West-transdanubian Water Authority. http://www.nyuduvizig.hu/index.php/en/ 2011
Szalai Z, Balogh J, Jakab G (2013) Riverbank erosion in Hungary—with an outlook on environmental consequences. Hung Geogr Bull 62(3):233–245
Qu Y, Lian B (2013) Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Biores Technol 136:16–23
Borra CR, Pontikes Y, Binnemans K, Van Gerven T (2015) Leaching of rare earths from bauxite residue (red mud). Miner Eng 76:20–27
European Union. Critical raw materials, 2016 http://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical/index_en.htm . Accessed 20 Jan 2016
Mayes WM, Jarvis AP, Burke IT, Walton M, Gruiz K (2011) Trace and rare earth element dispersal downstream of the Ajka red mud spill, Hungary. In: Proceedings of the international mine water association congress, Aachen, Germany, pp 29–34
Ujaczki É, Zimmermann YS, Feigl V, Lenz M (2015) Recovery of rare earth elements from Hungarian red mud with combined acid leaching and liquid-liquid extraction. In: Pontikes Y
(ed) Proceedings of the bauxite residue valorisation and best practices conference, Leuven, Belgium, October 2015, pp 339-345
Urik M, Bujdos M, Milova-Ziakova B, Mikusova P, Slovak M, Matus P (2015) Aluminium leaching from red mud by filamentous fungi. J Inorg Biochem 152:154–159
Ujaczki É, Feigl V, Farkas É, Vaszita E, Gruiz K, Molnár M (2016) Red mud as acidic sandy soil ameliorant: a microcosm incubation study. J Chem Technol Biotechnol. doi: 10.1002/jctb.4898
Ujaczki É, Feigl V, Molnár M, Vaszita E, Uzinger N, Erdélyi A, Gruiz K (2015) The potential application of red mud and soil mixture as additive to the surface layer of a landfill cover system. J Environ Sci. doi: 10.1016/j.jes.2015.12.014
Higgins D, Courtney R, Curtin T, Clune L (2015) Use of constructed wetlands for treating BRDA leachate and runoff. In: Pontikes Y
(ed) Proceedings of the bauxite residue valorisation and best practices conference, Leuven, Belgium, October 2015, pp 53-60