Advances in Polyimide‐Based Materials for Space Applications

Advanced Materials - Tập 31 Số 18 - 2019
I. Gouzman1, Eitan Grossman1, Ronen Verker1, Nurit Atar1, Asaf Bolker1, Noam Eliaz2
1Space Environment Department, Soreq Nuclear Research Center (NRC), Yavne, 81800 Israel
2Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv, Tel-Aviv, 6997801 Israel

Tóm tắt

AbstractThe space environment raises many challenges for new materials development and ground characterization. These environmental hazards in space include solar radiation, energetic particles, vacuum, micrometeoroids and debris, and space plasma. In low Earth orbits, there is also a significant concentration of highly reactive atomic oxygen (AO). This Progress Report focuses on the development of space‐durable polyimide (PI)‐based materials and nanocomposites and their testing under simulated space environment. Commercial PIs suffer from AO‐induced erosion and surface electric charging. Modified PIs and PI‐based nanocomposites are developed and tested to resist degradation in space. The durability of PIs in AO is successfully increased by addition of polyhedral oligomeric silsesquioxane. Conductive materials are prepared based on composites of PI and either carbon nanotube (CNT) sheets or 3D‐graphene structures. 3D PI structures, which can expand PI space applications, made by either additive manufacturing (AM) or thermoforming, are presented. The selection of AM‐processable engineering polymers in general, and PIs in particular, is relatively limited. Here, innovative preliminary results of a PI‐based material processed by the PolyJet technology are presented.

Từ khóa


Tài liệu tham khảo

Tribble A. C., 1995, The Space Environment: Implementation for Spacecraft Design

10.1016/S0168-583X(03)00640-2

10.1557/mrs2010.615

Banks B. A., 2010, MRS Bull., 35, 12

Silverman E. M., 1995, Space Environmental Effects on Spacecraft—LEO Material Selection Guide

Katz S., 2012, Wiley Encyclopedia of Composites, 2779

10.1007/BF00354389

Gouzman I., 2003, Eur. Space Agency [Spec. Publ.] SP‐540, 487

10.2514/1.31868

Bedingfield K. L., 1996, NASA Reference Publication 1390

Rooij A., 2010, Encyclopedia of Aerospace Engineering

Banks B., 2014, Spacecraft Polymers Atomic Oxygen Durability Handbook

2018, Orbital Debris Quarterly News, 11

Kessler D. J., 1988, Orbital Debris Environment for Spacecraft Designed to Operate in Low Earth Orbit

10.1016/j.progpolymsci.2016.12.002

Murphy C., 2016, Polyimides: Synthesis, Applications and Research

Ghosh M. K., 1996, Polyimides: Fundamentals and Applications

Yamashita T., 2012, Technical Proc. Nanotechnology Conf. Expo 2012: Volume 1: Advanced Materials, CNTs, Films and Composites

10.1007/978-94-010-9661-4

10.1007/978-1-4615-7637-2

Georgiev A., 2012, High Performance Polymers—Polyimides Based—From Chemistry to Applications

10.2494/photopolymer.12.209

10.1038/nature12314

10.1016/j.progpolymsci.2012.02.005

Gao H., 2017, Proc. SPIE, 10165, 101651B, 10.1117/12.2259938

10.1088/1361-665X/aa7bd7

10.1038/srep14137

10.1016/j.polymer.2012.11.007

10.1016/j.proeng.2014.11.124

Minton T. K., 2001, Chemical Dynamics in Extreme Environments, 420, 10.1142/9789812811882_0009

10.1063/1.3212676

10.1088/0954-0083/12/1/305

10.1016/S0257-8972(89)80022-2

10.2514/1.10726

10.1016/j.apsusc.2011.05.124

Snyder A., NASA‐TM‐210596 2001

10.1016/S0042-207X(02)00261-0

10.1021/am5072817

10.1063/1.3076852

10.1021/am100113t

10.1021/am100217m

10.1002/sia.6231

10.1021/acsami.6b10612

10.1177/0954008304044121

Tomczak S. J., 2006, Proc. SPIE, 6308, 630804

10.1016/j.compscitech.2012.05.014

10.1016/j.compscitech.2009.06.001

Verker R., 2011, Ph.D. Thesis

10.1016/j.corsci.2014.10.013

10.1016/j.eurpolymj.2017.05.004

10.1021/am201509n

10.1016/j.actamat.2004.08.013

Yamanaka R., 2017, Int. J. Microgravity Sci. Appl., 34, 340207

10.1016/j.polymer.2006.10.035

10.1177/0954008308089710

10.1016/j.actamat.2008.10.054

10.1021/ma034743r

10.1039/C4RA14727H

10.2514/1.A33488

10.1016/j.phpro.2013.11.053

10.1021/am402957s

10.1016/j.corsci.2015.05.060

10.1177/0954008314528011

10.1002/pc.22990

10.1021/jp4121029

10.1021/acsami.7b02032

10.1039/C7TA08748A

10.1088/1361-6528/aa7c5a

10.1021/cm200909x

10.1016/j.compscitech.2006.12.006

10.1016/j.compscitech.2005.05.038

Rawal S., 2013, 6th Int. Conf. Recent Advances Space Technol. (RAST)

http://www.nanocomptech.com/newsblog/nanocomp‐reaches‐new‐frontiers‐on‐nasas‐juno‐mission Miralon carbon‐based advanced materials (accessed: April2018).

10.1016/j.polymer.2005.05.127

10.1016/S0009-2614(02)01326-X

10.1016/j.polymer.2003.11.024

10.1016/j.polymer.2004.07.004

10.1016/j.compositesa.2010.07.003

10.3144/expresspolymlett.2007.39

10.1002/adma.201003188

10.1063/1.4897230

10.1016/j.compositesa.2017.06.011

10.1021/nl052238x

10.1007/s10544-013-9804-6

10.1063/1.2345615

Garcia E. J., 2009, J. Nano Syst. Technol., 1, 1

10.1016/j.compscitech.2012.11.003

10.1021/nn200847u

10.1016/j.cplett.2009.02.008

10.1021/cm0485254

10.1021/nl034273e

10.1021/am505811g

10.1021/acsami.5b02200

10.1038/nmat3001

10.1002/smll.201100990

10.1007/s10853-013-7471-x

10.1016/j.carbon.2013.08.059

10.1021/nl300662q

10.1126/science.1182383

10.1016/j.nanoen.2012.10.001

10.1021/acsnano.5b02781

10.1039/c3nr03379a

10.1021/nn500590g

10.1039/C4TA00364K

10.1021/acsami.7b12104

10.1002/smll.201502670

10.1002/1521-3935(20020401)203:5/6<801::AID-MACP801>3.0.CO;2-E

10.1016/j.carbon.2013.03.050

10.1016/j.compositesa.2015.05.017

10.1039/C4TA06417H

10.1039/C4TA04663C

Irwin P. C., 2003, Annual Report Conf. Electrical Insulation Dielectric Phenomena, 120

10.1021/jp101857w

10.2494/photopolymer.27.187

10.1016/j.polymertesting.2004.03.005

ECSS‐E‐ST‐20‐07C Rev. 1, 2012, Space Engineering: Electromagnetic Compatibility, European Cooperation for Space Standardization (ECSS)

10.1080/13642810108216536

10.1016/j.diamond.2009.02.023

10.1016/S0022-3093(01)01008-0

10.2514/1.A33495

ASTM E2089‐15, 2015, Standard Practices for Ground Laboratory Atomic Oxygen Interaction Evaluation of Materials for Space Applications

10.1016/j.polymdegradstab.2016.09.026

10.1177/0731684408090378

2014, 3D Printing in Space

V.Magan Additive manufacturing in the space industry to reach $4.7 billion http://www.satellitetoday.com/technology/2017/08/18/additive‐manufacturing‐space‐industry‐reach‐4‐7‐billion/(accessed: April2018).

Ghidini T., 2016, Room: The Space Journal, 1

M.Lisi T.Ghidini Additive manufacturing enables microwave components for space applications Microwaves&RF2017 http://www.mwrf.com/print/13680(accessed: April 2018).

Chuang K. C., 2016, The Composites and Advanced Materials Expo (CAMX)

10.1016/j.matlet.2018.07.020

L.Hu R. W.Avalian US 2017/0355820 A1.

10.1109/JPROC.2016.2625098

B.Jackson NASA awards Optomec contract supporting 3D printed electronics in space http://3dprintingindustry.com/news/nasa‐awards‐optomec‐contract‐supporting‐3d‐printed‐electronics‐space‐116777/(accessed: April2018).

Gouzman I., 2018, Proc. 14th ISMSE & 12th ICPMSE

Wagner A., 2018, J. Appl. Polym. Sci., 47244

I.Gouzman N.Atar R.Verker A.Bolker E.Grossman WO/2018/011674 2018 PCT/IB2017/054054.

Zhang F., 2016, J. Appl. Polym. Sci., 133, 43361, 10.1002/app.43361

Guo Y. X., 2017, J. Mater. Chem. A, 5, 8

10.1002/app.45335

10.1002/adma.201701240

10.1021/acsmacrolett.8b00126

10.1007/s11029-018-9715-y

Rinaldi M., 2015, Proc. 5th CEAS Air & Space Conf. Proc., Paper No. 208