Advances in Polyimide‐Based Materials for Space Applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Tribble A. C., 1995, The Space Environment: Implementation for Spacecraft Design
Banks B. A., 2010, MRS Bull., 35, 12
Silverman E. M., 1995, Space Environmental Effects on Spacecraft—LEO Material Selection Guide
Katz S., 2012, Wiley Encyclopedia of Composites, 2779
Gouzman I., 2003, Eur. Space Agency [Spec. Publ.] SP‐540, 487
Bedingfield K. L., 1996, NASA Reference Publication 1390
Rooij A., 2010, Encyclopedia of Aerospace Engineering
Banks B., 2014, Spacecraft Polymers Atomic Oxygen Durability Handbook
2018, Orbital Debris Quarterly News, 11
Kessler D. J., 1988, Orbital Debris Environment for Spacecraft Designed to Operate in Low Earth Orbit
Murphy C., 2016, Polyimides: Synthesis, Applications and Research
Ghosh M. K., 1996, Polyimides: Fundamentals and Applications
Yamashita T., 2012, Technical Proc. Nanotechnology Conf. Expo 2012: Volume 1: Advanced Materials, CNTs, Films and Composites
Georgiev A., 2012, High Performance Polymers—Polyimides Based—From Chemistry to Applications
Snyder A., NASA‐TM‐210596 2001
Tomczak S. J., 2006, Proc. SPIE, 6308, 630804
Verker R., 2011, Ph.D. Thesis
Yamanaka R., 2017, Int. J. Microgravity Sci. Appl., 34, 340207
Rawal S., 2013, 6th Int. Conf. Recent Advances Space Technol. (RAST)
http://www.nanocomptech.com/newsblog/nanocomp‐reaches‐new‐frontiers‐on‐nasas‐juno‐mission Miralon carbon‐based advanced materials (accessed: April2018).
Garcia E. J., 2009, J. Nano Syst. Technol., 1, 1
Irwin P. C., 2003, Annual Report Conf. Electrical Insulation Dielectric Phenomena, 120
ECSS‐E‐ST‐20‐07C Rev. 1, 2012, Space Engineering: Electromagnetic Compatibility, European Cooperation for Space Standardization (ECSS)
ASTM E2089‐15, 2015, Standard Practices for Ground Laboratory Atomic Oxygen Interaction Evaluation of Materials for Space Applications
2014, 3D Printing in Space
V.Magan Additive manufacturing in the space industry to reach $4.7 billion http://www.satellitetoday.com/technology/2017/08/18/additive‐manufacturing‐space‐industry‐reach‐4‐7‐billion/(accessed: April2018).
Ghidini T., 2016, Room: The Space Journal, 1
M.Lisi T.Ghidini Additive manufacturing enables microwave components for space applications Microwaves&RF2017 http://www.mwrf.com/print/13680(accessed: April 2018).
Chuang K. C., 2016, The Composites and Advanced Materials Expo (CAMX)
L.Hu R. W.Avalian US 2017/0355820 A1.
B.Jackson NASA awards Optomec contract supporting 3D printed electronics in space http://3dprintingindustry.com/news/nasa‐awards‐optomec‐contract‐supporting‐3d‐printed‐electronics‐space‐116777/(accessed: April2018).
Gouzman I., 2018, Proc. 14th ISMSE & 12th ICPMSE
Wagner A., 2018, J. Appl. Polym. Sci., 47244
I.Gouzman N.Atar R.Verker A.Bolker E.Grossman WO/2018/011674 2018 PCT/IB2017/054054.
Guo Y. X., 2017, J. Mater. Chem. A, 5, 8
Rinaldi M., 2015, Proc. 5th CEAS Air & Space Conf. Proc., Paper No. 208