Advances in Nanoparticles for Effective Delivery of RNA Therapeutics

BioChip Journal - Tập 16 Số 2 - Trang 128-145 - 2022
Min Ji Byun1, Jaesung Lim1, Se−Na Kim2, Dae-Hwan Park3, TaeHyung Kim, Wooram Park4, Chun Gwon Park5
1Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
2Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
3Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
4Department of Integrative Biotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
5Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Qiu, Y., Man, R.C.H., Liao, Q., Kung, K.L.K., Chow, M.Y.T., et al.: Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. J. Control Release 314, 102–115 (2019). https://doi.org/10.1016/j.jconrel.2019.10.026

Sahin, U., Kariko, K., Tureci, O.: mRNA-based therapeutics–developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014). https://doi.org/10.1038/nrd4278

Kormann, M.S.D., Hasenpusch, G., Aneja, M.K., Nica, G., Flemmer, A.W., et al.: Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 29, 154-U196 (2011). https://doi.org/10.1038/nbt.1733

Mays, L.E., Ammon-Treiber, S., Mothes, B., Alkhaled, M., Rottenberger, J., et al.: Modified Foxp3 mRNA protects against asthma through an IL-10 dependent mechanism. J. Clin. Invest. 123, 1216–1228 (2013). https://doi.org/10.1172/Jci65351

Sahu, I., Haque, A., Weidensee, B., Weinmann, P., Kormann, M.S.D.: Recent developments in mRNA-based protein supplementation therapy to target lung diseases. Mol. Ther. 27, 803–823 (2019). https://doi.org/10.1016/j.ymthe.2019.02.019

Meng, C.Y., Chen, Z., Li, G., Welte, T., Shen, H.F.: Nanoplatforms for mRNA therapeutics. Adv. Ther. Germ. (2021). https://doi.org/10.1002/adtp.202000099

Probst, J., Weide, B., Scheel, B., Pichler, B.J., Hoerr, I., et al.: Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Ther. 14, 1175–1180 (2007). https://doi.org/10.1038/sj.gt.3302964

Van Lint, S., Goyvaerts, C., Maenhout, S., Goethals, L., Disy, A., et al.: Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res. 72, 1661–1671 (2012). https://doi.org/10.1158/0008-5472.CAN-11-2957

Phua, K.K., Leong, K.W., Nair, S.K.: Transfection efficiency and transgene expression kinetics of mRNA delivered in naked and nanoparticle format. J. Control Release 166, 227–233 (2013). https://doi.org/10.1016/j.jconrel.2012.12.029

Li, B., Zhang, X., Dong, Y.: Nanoscale platforms for messenger RNA delivery. Wiley Interdiscip. Rev Nanomed. Nanobiotechnol. 11, e1530 (2019). https://doi.org/10.1002/wnan.1530

Anselmo, A.C., Mitragotri, S.: Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019). https://doi.org/10.1002/btm2.10143

Anselmo, A.C., Mitragotri, S.: Nanoparticles in the clinic: an update post COVID-19 vaccines. Bioeng. Transl. Med. (2021). https://doi.org/10.1002/btm2.10246

Kowalski, P.S., Rudra, A., Miao, L., Anderson, D.G.: Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol. Ther. 27, 710–728 (2019). https://doi.org/10.1016/j.ymthe.2019.02.012

Hou, X., Zaks, T., Langer, R., Dong, Y.: Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. (2021). https://doi.org/10.1038/s41578-021-00358-0

Xue, H.Y., Liu, S., Wong, H.L.: Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine (London) 9, 295–312 (2014). https://doi.org/10.2217/nnm.13.204

Ho, W., Gao, M., Li, F., Li, Z., Zhang, X.Q., et al.: Next-generation vaccines: nanoparticle-mediated DNA and mRNA delivery. Adv. Healthc. Mater. 10, e2001812 (2021). https://doi.org/10.1002/adhm.202001812

Tenchov, R., Bird, R., Curtze, A.E., Zhou, Q.: Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano (2021). https://doi.org/10.1021/acsnano.1c04996

Smith, S.A., Selby, L.I., Johnston, A.P.R., Such, G.K.: The endosomal escape of nanoparticles: toward more efficient cellular delivery. Bioconjug. Chem. 30, 263–272 (2019). https://doi.org/10.1021/acs.bioconjchem.8b00732

Guerrero, J.M., Aguirre, F.S., Mota, M.L., Carrillo, A.: Advances for the development of in vitro immunosensors for multiple sclerosis diagnosis. Biochip J. 15, 205–215 (2021). https://doi.org/10.1007/s13206-021-00018-z

Sung, Y.K., Kim, S.W.: Recent advances in polymeric drug delivery systems. Biomater. Res. 24, 12 (2020). https://doi.org/10.1186/s40824-020-00190-7

Kamaly, N., Xiao, Z.Y., Valencia, P.M., Radovic-Moreno, A.F., Farokhzad, O.C.: Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971–3010 (2012). https://doi.org/10.1039/c2cs15344k

Ke, L.J., Cai, P.Q., Wu, Y.L., Chen, X.D.: Polymeric nonviral gene delivery systems for cancer immunotherapy. Adv. Ther. Germ. (2020). https://doi.org/10.1002/adtp.201900213

Rai, R., Alwani, S., Badea, I.: Polymeric nanoparticles in gene therapy: new avenues of design and optimization for delivery applications. Polym. Basel (2019). https://doi.org/10.3390/polym11040745

Cao, Y., Tan, Y.F., Wong, Y.S., Liew, M.W.J., Venkatraman, S.: Recent advances in chitosan-based carriers for gene delivery. Mar. Drugs (2019). https://doi.org/10.3390/md17060381

Soliman, O.Y., Alameh, M.G., De Cresenzo, G., Buschmann, M.D., Lavertu, M.: Efficiency of chitosan/hyaluronan-based mRNA delivery systems in vitro: influence of composition and structure. J. Pharm. Sci. 109, 1581–1593 (2020). https://doi.org/10.1016/j.xphs.2019.12.020

Lee, W.J., Kim, K.J., Hossain, M.K., Cho, H.Y., Choi, J.W.: DNA-gold nanoparticle conjugates for intracellular miRNA detection using surface-enhanced raman spectroscopy. Biochip J. (2022). https://doi.org/10.1007/s13206-021-00042-z

Nguyen, M.A., Wyatt, H., Susser, L., Geoffrion, M., Rasheed, A., et al.: Delivery of microRNAs by chitosan nanoparticles to functionally alter macrophage cholesterol efflux in vitro and in vivo. ACS Nano 13, 6491–6505 (2019). https://doi.org/10.1021/acsnano.8b09679

Pilipenko, I., Korzhikov-Vlakh, V., Sharoyko, V., Zhang, N., Schafer-Korting, M., et al.: pH-sensitive chitosan-heparin nanoparticles for effective delivery of genetic drugs into epithelial cells. Pharmaceutics (2019). https://doi.org/10.3390/pharmaceutics11070317

Bae, J., Park, S.J., Shin, D.S., Lee, J., Park, S., et al.: A dual functional conductive hydrogel containing titania@polypyrrole-cyclodextrin hybrid nanotubes for capture and degradation of toxic chemical. Biochip J. 15, 162–170 (2021). https://doi.org/10.1007/s13206-021-00015-2

Liang, Y., Wang, Y., Wang, L., Liang, Z., Li, D., et al.: Self-crosslinkable chitosan-hyaluronic acid dialdehyde nanoparticles for CD44-targeted siRNA delivery to treat bladder cancer. Bioact. Mater. 6, 433–446 (2021). https://doi.org/10.1016/j.bioactmat.2020.08.019

Erdene-Ochir, T., Ganbold, T., Zandan, J., Han, S., Borjihan, G., et al.: Alkylation enhances biocompatibility and siRNA delivery efficiency of cationic curdlan nanoparticles. Int. J. Biol. Macromol. 143, 118–125 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.048

O’Brien, K., Breyne, K., Ughetto, S., Laurent, L.C., Breakefield, X.O.: RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21, 585–606 (2020). https://doi.org/10.1038/s41580-020-0251-y

Luan, X., Sansanaphongpricha, K., Myers, I., Chen, H.W., Yuan, H.B., et al.: Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin. 38, 754–763 (2017). https://doi.org/10.1038/aps.2017.12

Aqil, F., Munagala, R., Jeyabalan, J., Agrawal, A.K., Kyakulaga, A.H., et al.: Milk exosomes—natural nanoparticles for siRNA delivery. Cancer Lett. 449, 186–195 (2019). https://doi.org/10.1016/j.canlet.2019.02.011

Yang, Z., Shi, J., Xie, J., Wang, Y., Sun, J., et al.: Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng 4, 69–83 (2020). https://doi.org/10.1038/s41551-019-0485-1

Kojima, R., Bojar, D., Rizzi, G., Hamri, G.C., El-Baba, M.D., et al.: Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat. Commun. 9, 1305 (2018). https://doi.org/10.1038/s41467-018-03733-8

Li, Z., Zhao, P., Zhang, Y., Wang, J., Wang, C., et al.: Exosome-based Ldlr gene therapy for familial hypercholesterolemia in a mouse model. Theranostics 11, 2953–2965 (2021). https://doi.org/10.7150/thno.49874

Kolonko, A.K., Efing, J., Gonzalez-Espinosa, Y., Bangel-Ruland, N., van Driessche, W., et al.: Capsaicin-loaded chitosan nanocapsules for wtCFTR-mRNA delivery to a cystic fibrosis cell line. Biomedicines (2020). https://doi.org/10.3390/biomedicines8090364

Miyazaki, T., Uchida, S., Nagatoishi, S., Koji, K., Hong, T., et al.: Polymeric nanocarriers with controlled chain flexibility boost mRNA delivery in vivo through enhanced structural fastening. Adv. Healthc. Mater. (2020). https://doi.org/10.1002/adhm.202000538

Patel, A.K., Kaczmarek, J.C., Bose, S., Kauffman, K.J., Mir, F., et al.: Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv. Mater. 31, e1805116 (2019). https://doi.org/10.1002/adma.201805116

Yoshinaga, N., Uchida, S., Naito, M., Osada, K., Cabral, H., et al.: Induced packaging of mRNA into polyplex micelles by regulated hybridization with a small number of cholesteryl RNA oligonucleotides directed enhanced in vivo transfection. Biomaterials 197, 255–267 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.023

Koji, K., Yoshinaga, N., Mochida, Y., Hong, T., Miyazaki, T., et al.: Bundling of mRNA strands inside polyion complexes improves mRNA delivery efficiency in vitro and in vivo. Biomaterials 261, 120332 (2020). https://doi.org/10.1016/j.biomaterials.2020.120332

Chan, L.Y., Khung, Y.L., Lin, C.Y.: Preparation of messenger RNA nanomicelles via non-cytotoxic PEG-polyamine nanocomplex for intracerebroventicular delivery: a proof-of-concept study in mouse models. Nanomaterials (Basel) (2019). https://doi.org/10.3390/nano9010067

Kim, H.J., Ogura, S., Otabe, T., Kamegawa, R., Sato, M., et al.: Fine-tuning of hydrophobicity in amphiphilic polyaspartamide derivatives for rapid and transient expression of messenger RNA directed toward genome engineering in brain. ACS Cent. Sci. 5, 1866–1875 (2019). https://doi.org/10.1021/acscentsci.9b00843

Abbasi, S., Uchida, S., Toh, K., Tockary, T.A., Dirisala, A., et al.: Co-encapsulation of Cas9 mRNA and guide RNA in polyplex micelles enables genome editing in mouse brain. J. Control Release 332, 260–268 (2021). https://doi.org/10.1016/j.jconrel.2021.02.026

Xue, L., Yan, Y., Kos, P., Chen, X., Siegwart, D.J.: PEI fluorination reduces toxicity and promotes liver-targeted siRNA delivery. Drug Deliv. Transl. Res. 11, 255–260 (2021). https://doi.org/10.1007/s13346-020-00790-9

Grun, M.K., Suberi, A., Shin, K., Lee, T., Gomerdinger, V., et al.: PEGylation of poly(amine-co-ester) polyplexes for tunable gene delivery. Biomaterials 272, 120780 (2021). https://doi.org/10.1016/j.biomaterials.2021.120780

Oyama, N.K., Itaka, M.K.; Kawakami, S.: Efficient messenger RNA delivery to the kidney using renal pelvis injection in mice. Pharmaceutics 13, 1810 (2021). https://doi.org/10.3390/pharmaceutics13111810

Hamada, E., Kurosaki, T., Hashizume, J., Harasawa, H., Nakagawa, H., et al.: Anionic complex with efficient expression and good safety profile for mRNA delivery. Pharmaceutics (2021). https://doi.org/10.3390/pharmaceutics13010126

Mohammadinejad, R., Dehshahri, A., Sagar Madamsetty, V., Zahmatkeshan, M., Tavakol, S., et al.: In vivo gene delivery mediated by non-viral vectors for cancer therapy. J. Control Release 325, 249–275 (2020). https://doi.org/10.1016/j.jconrel.2020.06.038

McKinlay, C.J., Vargas, J.R., Blake, T.R., Hardy, J.W., Kanada, M., et al.: Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl. Acad. Sci. USA 114, E448–E456 (2017). https://doi.org/10.1073/pnas.1614193114

Haabeth, O.A.W., Blake, T.R., McKinlay, C.J., Tveita, A.A., Sallets, A., et al.: Local delivery of Ox40l, Cd80, and Cd86 mRNA kindles global anticancer immunity. Cancer Res 79, 1624–1634 (2019). https://doi.org/10.1158/0008-5472.CAN-18-2867

Zhang, F., Parayath, N., Coon, M., Stephan, S., Stephan, M.: Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat. Commun. 10, 3974 (2019). https://doi.org/10.1158/0008-5472.CAN-18-2867

Ewe, A., Noske, S., Karimov, M., Aigner, A.: Polymeric nanoparticles based on tyrosine-modified, low molecular weight polyethylenimines for siRNA delivery. Pharmaceutics (2019). https://doi.org/10.3390/pharmaceutics11110600

Zhupanyn, P., Ewe, A., Buch, T., Malek, A., Rademacher, P., et al.: Extracellular vesicle (ECV)-modified polyethylenimine (PEI) complexes for enhanced siRNA delivery in vitro and in vivo. J. Control Release 319, 63–76 (2020). https://doi.org/10.1016/j.jconrel.2019.12.032

Karlsson, J., Rui, Y., Kozielski, K.L., Placone, A.L., Choi, O., et al.: Engineered nanoparticles for systemic siRNA delivery to malignant brain tumours. Nanoscale 11, 20045–20057 (2019). https://doi.org/10.1039/c9nr04795f

Kozielski, K.L., Ruiz-Valls, A., Tzeng, S.Y., Guerrero-Cazares, H., Rui, Y., et al.: Cancer-selective nanoparticles for combinatorial siRNA delivery to primary human GBM in vitro and in vivo. Biomaterials 209, 79–87 (2019). https://doi.org/10.1016/j.biomaterials.2019.04.020

Pardi, N., Hogan, M.J., Weissman, D.: Recent advances in mRNA vaccine technology. Curr. Opin. Immunol. 65, 14–20 (2020). https://doi.org/10.1016/j.coi.2020.01.008

Karpenko, L.I., Rudometov, A.P., Sharabrin, S.V., Shcherbakov, D.N., Borgoyakova, M.B., et al.: Delivery of mRNA vaccine against SARS-CoV-2 using a polyglucin: spermidine conjugate. Vac. Basel (2021). https://doi.org/10.3390/vaccines9020076

Ren, J., Cao, Y.M., Li, L., Wang, X., Lu, H.T., et al.: Self-assembled polymeric micelle as a novel mRNA delivery carrier. J. Control. Release 338, 537–547 (2021). https://doi.org/10.1016/j.jconrel.2021.08.061

Yoshinaga, N., Uchida, S., Dirisala, A., Naito, M., Osada, K., et al.: mRNA loading into ATP-responsive polyplex micelles with optimal density of phenylboronate ester crosslinking to balance robustness in the biological milieu and intracellular translational efficiency. J. Control. Release 330, 317–328 (2021). https://doi.org/10.1016/j.jconrel.2020.12.033

Jones, S.W., Christison, R., Bundell, K., Voyce, C.J., Brockbank, S.M., et al.: Characterisation of cell-penetrating peptide-mediated peptide delivery. Br. J. Pharmacol. 145, 1093–1102 (2005). https://doi.org/10.1038/sj.bjp.0706279

Shoari, A., Tooyserkani, R., Tahmasebi, M., Lowik, D.W.P.M.: Delivery of various cargos into cancer cells and tissues via cell-penetrating peptides: a review of the last decade. Pharmaceutics (2021). https://doi.org/10.3390/pharmaceutics13091391

He, J.X., Xu, S.H., Leng, Q.X., Mixson, A.J.: Location of a single histidine within peptide carriers increases mRNA delivery. J. Gene Med. (2021). https://doi.org/10.1002/jgm.3295

Krhac-Levacic, A., Berger, S., Muller, J., Wegner, A., Lachelt, U., et al.: Dynamic mRNA polyplexes benefit from bioreducible cleavage sites for in vitro and in vivo transfer. J. Control Release 339, 27–40 (2021). https://doi.org/10.1016/j.jconrel.2021.09.016

Eom, G., Hwang, A., Kim, H., Moon, J., Kang, H., et al.: Ultrasensitive detection of ovarian cancer biomarker using Au nanoplate SERS immunoassay. Biochip J. 15, 348–355 (2021). https://doi.org/10.1007/s13206-021-00031-2

van den Brand, D., Gorris, M.A.J., van Asbeck, A.H., Palmen, E., Ebisch, I., et al.: Peptide-mediated delivery of therapeutic mRNA in ovarian cancer. Eur. J. Pharm. Biopharm. 141, 180–190 (2019). https://doi.org/10.1016/j.ejpb.2019.05.014

Dong, Y.W., Chen, Y., Zhu, D.D., Shi, K.J., Ma, C., et al.: Self-assembly of amphiphilic phospholipid peptide dendrimer-based nanovectors for effective delivery of siRNA therapeutics in prostate cancer therapy. J. Control. Release 322, 416–425 (2020). https://doi.org/10.1016/j.jconrel.2020.04.003

Strand, M.S., Krasnick, B.A., Pan, H., Zhang, X., Bi, Y., et al.: Precision delivery of RAS-inhibiting siRNA to KRAS driven cancer via peptide-based nanoparticles. Oncotarget 10, 4761–4775 (2019). https://doi.org/10.18632/oncotarget.27109

Wu, Y., Tang, Y., Xie, S., Zheng, X., Zhang, S., et al.: Chimeric peptide supramolecular nanoparticles for plectin-1 targeted miRNA-9 delivery in pancreatic cancer. Theranostics 10, 1151–1165 (2020). https://doi.org/10.7150/thno.38327

Kim, R., Nam, Y.: Fabrication of a nanoplasmonic chip to enhance neuron membrane potential imaging by metal-enhanced fluorescence effect. Biochip J. 15, 171–178 (2021). https://doi.org/10.1007/s13206-021-00017-0

Mbatha, L.S., Maiyo, F., Daniels, A., Singh, M.: Dendrimer-coated gold nanoparticles for efficient folate-targeted mRNA delivery in vitro. Pharmaceutics (2021). https://doi.org/10.3390/pharmaceutics13060900

Kim, K.S., Han, J.H., Park, J.H., Kim, H.K., Choi, S.H., et al.: Multifunctional nanoparticles for genetic engineering and bioimaging of natural killer (NK) cell therapeutics. Biomaterials (2019). https://doi.org/10.1016/j.biomaterials.2019.119418

Singh, D., Singh, M.: Hepatocellular-targeted mRNA delivery using functionalized selenium nanoparticles in vitro. Pharmaceutics (2021). https://doi.org/10.3390/pharmaceutics13030298

Yeom, J.H., Ryou, S.M., Won, M., Park, M., Bae, J., et al.: Inhibition of xenograft tumor growth by gold nanoparticle-DNA oligonucleotide conjugates-assisted delivery of BAX mRNA. PLoS ONE 8, e75369 (2013). https://doi.org/10.1371/journal.pone.0075369

Maiyo, F., Singh, M.: Folate-targeted mRNA delivery using chitosan-functionalized selenium nanoparticles: potential in cancer immunotherapy. Pharmaceuticals Basel (2019). https://doi.org/10.3390/ph12040164

Singh, N., Qutub, S., Khashab, N.M.: Biocompatibility and biodegradability of metal organic frameworks for biomedical applications. J. Mater. Chem. B 9, 5925–5934 (2021). https://doi.org/10.1039/d1tb01044a

Yang, H., Peng, F., Dang, C., Wang, Y., Hu, D., et al.: Ligand charge separation to build highly stable quasi-isomer of MOF-74-Zn. J. Am. Chem. Soc. 141, 9808–9812 (2019). https://doi.org/10.1021/jacs.9b04432

Peng, S., Bie, B., Sun, Y., Liu, M., Cong, H., et al.: Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat. Commun. 9, 1293 (2018). https://doi.org/10.1038/s41467-018-03650-w

Sun, P., Li, Z., Wang, J., Gao, H., Yang, X., et al.: Transcellular delivery of messenger RNA payloads by a cationic supramolecular MOF platform. Chem. Commun. (Camb.) 54, 11304–11307 (2018). https://doi.org/10.1039/c8cc07047d

Gao, P., Lou, R., Liu, X., Cui, B., Pan, W., et al.: Rational design of a dual-layered metal-organic framework nanostructure for enhancing the cell imaging of molecular beacons. Anal Chem 93, 5437–5441 (2021). https://doi.org/10.1021/acs.analchem.0c05060

Liu, N., Zou, Z., Liu, J., Zhu, C., Zheng, J., et al.: A fluorescent nanoprobe based on azoreductase-responsive metal-organic frameworks for imaging VEGF mRNA under hypoxic conditions. Analyst 144, 6254–6261 (2019). https://doi.org/10.1039/c9an01671f

Siewert, C.D., Haas, H., Cornet, V., Nogueira, S.S., Nawroth, T., et al.: Hybrid biopolymer and lipid nanoparticles with improved transfection efficacy for mRNA. Cells (2020). https://doi.org/10.3390/cells9092034

Zhao, W., Zhang, C., Li, B., Zhang, X., Luo, X., et al.: Lipid polymer hybrid nanomaterials for mRNA delivery. Cell Mol. Bioeng. 11, 397–406 (2018). https://doi.org/10.1007/s12195-018-0536-9

Dave, V., Tak, K., Sohgaura, A., Gupta, A., Sadhu, V., et al.: Lipid-polymer hybrid nanoparticles: synthesis strategies and biomedical applications. J. Microbiol. Methods 160, 130–142 (2019). https://doi.org/10.1016/j.mimet.2019.03.017

He, C., Lu, K., Liu, D., Lin, W.: Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 136, 5181–5184 (2014). https://doi.org/10.1021/ja4098862

Zhao, H.X., Li, T.T., Yao, C., Gu, Z., Liu, C.X., et al.: Dual roles of metal-organic frameworks as nanocarriers for miRNA delivery and adjuvants for chemodynamic therapy. ACS Appl. Mater. Interfaces 13, 6034–6042 (2021). https://doi.org/10.1021/acsami.0c21006

Gao, Y., Men, K., Pan, C.B., Li, J.M., Wu, J.P., et al.: Functionalized DMP-039 hybrid nanoparticle as a novel mRNA vector for efficient cancer suicide gene therapy. Int. J. Nanomed. 16, 5211–5232 (2021). https://doi.org/10.2147/Ijn.S319092

Yang, J., Arya, S., Lung, P., Lin, Q., Huang, J., et al.: Hybrid nanovaccine for the co-delivery of the mRNA antigen and adjuvant. Nanoscale 11, 21782–21789 (2019). https://doi.org/10.1039/c9nr05475h

Coolen, A.L., Lacroix, C., Mercier-Gouy, P., Delaune, E., Monge, C., et al.: Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation. Biomaterials 195, 23–37 (2019). https://doi.org/10.1016/j.biomaterials.2018.12.019

Nguyen, Q.H., Kim, M.I.: Using nanomaterials in colorimetric toxin detection. Biochip J. 15, 123–134 (2021). https://doi.org/10.1007/s13206-021-00013-4

Reichmuth, A.M., Oberli, M.A., Jaklenec, A., Langer, R., Blankschtein, D.: mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv. 7, 319–334 (2016). https://doi.org/10.4155/tde-2016-0006

Hajj, K.A., Whitehead, K.A.: Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. (2017). https://doi.org/10.1038/natrevmats.2017.56

Guan, S., Rosenecker, J.: Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther. 24, 133–143 (2017). https://doi.org/10.1038/gt.2017.5

Uchida, S., Perche, F., Pichon, C., Cabral, H.: Nanomedicine-based approaches for mRNA delivery. Mol Pharm 17, 3654–3684 (2020). https://doi.org/10.1021/acs.molpharmaceut.0c00618

Wu, Z., Li, T.: Nanoparticle-mediated cytoplasmic delivery of messenger RNA vaccines: challenges and future perspectives. Pharm. Res. 38, 473–478 (2021). https://doi.org/10.1007/s11095-021-03015-x

Cho, H.H., Heo, J.H., Jung, D., Kim, S.H., Suh, S.J., et al.: Portable Au nanoparticle-based colorimetric sensor strip for rapid on-site detection of Cd2+ ions in potable water. Biochip. J. 15, 276–286 (2021). https://doi.org/10.1007/s13206-021-00029-w

Islam, M.A., Reesor, E.K., Xu, Y., Zope, H.R., Zetter, B.R., et al.: Biomaterials for mRNA delivery. Biomater. Sci. 3, 1519–1533 (2015). https://doi.org/10.1039/c5bm00198f