Advances in Molecular Electronics: A Brief Review

Engineering - Tập 4 Số 6 - Trang 760-771 - 2018
Paven Thomas Mathew1, Fengzhou Fang2,1
1Center of Micro/Nano Manufacturing Technology (MNMT-Dublin), University College Dublin, Dublin D04 V1W8, Ireland
2Center of Micro/Nano Manufacturing Technology (MNMT), Tianjin University, Tianjin 300072, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Marcus, 1993, Electron transfer reactions in chemistry: theory and experiment (nobel lecture), Rev Mod Physics, 65, 599, 10.1103/RevModPhys.65.599

Ratner, 2013, A brief history of molecular electronics, Nat Nanotechnol, 8, 378, 10.1038/nnano.2013.110

Heath, 2003, Molecular electronics, Phys Today, 43, 10.1063/1.1583533

Lee, 2003, Mechanism of electron conduction in self-assembled alkanethiol monolayer devices, Phys Rev B, 68, 21

Metzger, 1997, Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide, J Am Chem Soc, 119, 10455, 10.1021/ja971811e

McCreery, 2004, Molecular electronic junctions, Chem Mater, 16, 4477, 10.1021/cm049517q

Yaliraki, 1999, Conductance of molecular wires: influence of molecule-electrode binding, J Am Chem Soc, 121, 3428, 10.1021/ja982918k

Landauer, 1957, Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J Res Dev, 1, 223, 10.1147/rd.13.0223

Maassen, 2015, The Landauer approach to electron and phonon transport, ECS Trans, 69, 23, 10.1149/06909.0023ecst

Kim, 2009, Influence of dimensionality on thermoelectric device performance, J Appl Phys, 105

Majumdar, 1993, Microscale heat conduction in dielectric thin films, J Heat Transfer, 115, 7, 10.1115/1.2910673

Scheidemantel, 2003, Transport coefficients from first-principles calculations, Phys Rev B, 68, 10.1103/PhysRevB.68.125210

Roger, 1992, Nonequilibrium Green's-function method applied to double-barrier resonant-tunneling diodes, Phys Rev B, 45, 6670, 10.1103/PhysRevB.45.6670

Koswatta, 2007, Nonequilibrium Green’s function treatment of phonon scattering in carbon-nanotube transistors, IEEE Trans Electron Devices, 54, 2339, 10.1109/TED.2007.902900

Whitesides, 2002, Beyond molecules: self-assembly of mesoscopic and macroscopic components, Proc Natl Acad Sci, 99, 4769, 10.1073/pnas.082065899

Vericat, 2010, Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system, Chem Soc Rev, 39, 1805, 10.1039/b907301a

Kushmerick, 2009, Molecular transistors scrutinized, Nature, 462, 994, 10.1038/462994a

Ellenbogen, 2000, Architectures for molecular electronic computers: 1. Logic structures and an adder designed from molecular electronic diodes, Proc IEEE, 88, 386, 10.1109/5.838115

Yu, 2003, The molecule-electrode interface in single-molecule transistors, Angew Chem, 42, 5706, 10.1002/anie.200352352

Ghosh, 2004, Gating of a molecular transistor: electrostatic and conformational, Nano Lett, 4, 565, 10.1021/nl035109u

Ahn, 2006, Electrostatic modification of novel materials, Rev Mod Phys, 78, 1185, 10.1103/RevModPhys.78.1185

Jin, 2018, Controlling band alignment in molecular junctions: utilizing two-dimensional transition-metal dichalcogenides as electrodes for thermoelectric devices, J Phys Chem C, 122, 14233, 10.1021/acs.jpcc.8b00464

Flood, 2004, Whence molecular electronics?, Science, 306, 2055, 10.1126/science.1106195

Chen, 2003, Nanoscale molecular-switch crossbar circuits, Nanotechnology, 14, 462, 10.1088/0957-4484/14/4/311

Long, 2003, Assembly of an electronically switchable rotaxane on the surface of a titanium dioxide nanoparticle, J Am Chem Soc, 125, 15490, 10.1021/ja037592g

Zhu, 2018, Ring-through-ring molecular shuttling in a saturated [3]rotaxane, Nat Chem, 10, 625, 10.1038/s41557-018-0040-9

Papadopoulos, 2006, Control of electron transport through Fano resonances in molecular wires, Phys Rev B, 74, 10.1103/PhysRevB.74.193306

Reed, 1997, Conductance of a molecular junction, Science, 278, 252, 10.1126/science.278.5336.252

Joachim, 1995, Electronic transparence of a single C60 molecule, Phys Rev Lett, 74, 2102, 10.1103/PhysRevLett.74.2102

Eigler, 1990, Positioning single atoms with a scanning tunneling microscope, Nature, 344, 524, 10.1038/344524a0

Sotthewes, 2014, Research update: molecular electronics: the single-molecule switch and transistor, APL Mater, 2, 10.1063/1.4855775

Joachim, 1995, Electronic transparence of a single C60 molecule, Phys Rev Lett, 74, 2102, 10.1103/PhysRevLett.74.2102

Xu, 2015, Adsorption of anionic thiols on silver nanoparticles, J Phys Chem C, 119, 5454, 10.1021/jp511997w

Heinze, 2002, Carbon nanotubes as schottky barrier transistors, Phys Rev Lett, 89, 10.1103/PhysRevLett.89.106801

Javey, 2003, Ballistic carbon nanotube field-effect transistors, Nature, 424, 654, 10.1038/nature01797

Ebbesen, 1996, Electrical conductivity of individual carbon nanotubes, Nature, 382, 54, 10.1038/382054a0

Durrani, 2003, Coulomb blockade, single-electron transistors and circuits in silicon, Physica E, 17, 572, 10.1016/S1386-9477(02)00874-3

Averin, 1986, Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions, J Low Temp Phys, 62, 345, 10.1007/BF00683469

Takahashi, 2000, Control of Coulomb blockade oscillations in silicon single electron transistors using silicon nanocrystal floating gates, Appl Phys Lett, 76, 209, 10.1063/1.125704

Ali, 1994, Coulomb blockade in a silicon tunnel junction device, Appl Phys Lett, 64, 2119, 10.1063/1.111702

Sols, 2007, Coulomb blockade in graphene nanoribbons, Phys Rev Lett, 166803, 25

Liang, 2002, Kondo resonance in a single-molecule transistor, Nature, 417, 725, 10.1038/nature00790

Mitchell, 2017, Kondo blockade due to quantum interference in single-molecule junctions, Nat Commun, 8, 15210, 10.1038/ncomms15210

Park, 2002, Coulomb blockade and the Kondo effect in single-atom transistors, Nature, 417, 722, 10.1038/nature00791

Kouwenhoven, 2001, Revival of the Kondo effect, Phys World, 14, 33, 10.1088/2058-7058/14/1/28

Ke, 2008, Quantum-interference-controlled molecular electronics, Nano Lett, 8, 3257, 10.1021/nl8016175

Stafford, 2007, The quantum interference effect transistor, Nanotechnology, 18, 10.1088/0957-4484/18/42/424014

Guédon, 2012, Observation of quantum interference in molecular charge transport, Nat Nanotechnol, 7, 305, 10.1038/nnano.2012.37

Chen, 2017, Can molecular quantum interference effect transistors survive, J Phys Chem, 8, 5166

Aviram, 1974, Molecular rectifiers, Chem Phys Lett, 29, 277, 10.1016/0009-2614(74)85031-1

Roland, 2006, The effect of electric fields on double-well-potential molecules, Ann New York Acad Sci, 339

Ng, 2002, Molecular diodes based on conjugated diblock co-oligomers, J Am Chem Soc, 124, 11862, 10.1021/ja026808w

Liu, 2006, Organometallic molecular rectification, J Chem Phys, 124, 1, 10.1063/1.2141955

Kornilovitch, 2002, Current rectification by molecules with asymmetric tunneling barriers, Phys Rev B Condens Matter Mater Phys, 66, 1, 10.1103/PhysRevB.66.165436

Nijhuis, 2010, Mechanism of rectification in tunneling junctions based on molecules with asymmetric potential drops, J Am Chem Soc, 132, 18386, 10.1021/ja108311j

Armstrong, 2007, Exploring the performance of molecular rectifiers: limitations and factors affecting molecular rectification, Nano Lett, 7, 3018, 10.1021/nl0714435

Metzger, 1999, Electrical rectification by a molecule: the advent of unimolecular electronic devices, Acc Chem Res, 32, 950, 10.1021/ar9900663

Metzger, 2018, Quo vadis, unimolecular electronics?, Nanoscale, 10, 10316, 10.1039/C8NR01905C

Martin, 1993, Molecular rectifier, Phys Rev Lett, 70, 218, 10.1103/PhysRevLett.70.218

Lenfant, 2003, Molecular rectifying diodes from self-assembly on silicon, Nano Lett, 3, 741, 10.1021/nl034162f

Vilan, 2000, Molecular control over Au/GaAs diodes, Nature, 404, 166, 10.1038/35004539

Brown, 1991, Oscillations up to 712 GHz in InAs/AISb diodes, Society, 58, 2291

Sun, 1998, Resonant tunneling diodes: models and properties, Proc IEEE, 86, 641, 10.1109/5.663541

Ellenbogen JC, inventor. Monomolecular electronic device. United States patent US 6339227. 2002 Jan 15.

Tsu R, inventor; Tsu R, assignee. Quantum well structures useful for semiconductor devices. United States patent US5216262A. 1993 Jun 1.

Seminario, 2000, Theoretical study of a molecular resonant tunneling diode, J Am Chem Soc, 122, 3015, 10.1021/ja992936h

Chen, 1999, Large on-off ratios and negative differential resistance in a molecular electronic device, Science, 286, 1550, 10.1126/science.286.5444.1550

Lake R, Alam K, Burque NA, Pandey R, inventors; The Regents of the University of California, assignee. Molecular resonant tunneling diode. United States patent US20080035913A1. 2008 Feb 14.

Campbell, 1996, Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers, Phys Rev B Condens Matter, 54, R14321, 10.1103/PhysRevB.54.R14321

Ellenbogen, 1998, A brief overview of nanoelectronic devices

Goldhaber-Gordon, 1997, Overview of nanoelectronic devices, Proc IEEE, 85, 521, 10.1109/5.573739

Dragoman, 2004, Terahertz oscillations in semiconducting carbon nanotube resonant-tunneling diodes, Physica E, 24, 282, 10.1016/j.physe.2004.05.001

Pandey, 2006, Carbon nanotube—molecular resonant tunneling diode, Phys Status Solidi, 203, R5, 10.1002/pssa.200521467

Bayram, 2010, AlN/GaN double-barrier resonant tunneling diodes grown by metal–organic chemical vapor deposition, Appl Phys Lett, 96, 2, 10.1063/1.3294633

Lindsey, 2011, Molecules for charge-based information storage, Acc Chem Res, 44, 638, 10.1021/ar200107x

Kuhr, 2004, Molecular memories based on a CMOS platform, MRS Bull, 29, 838, 10.1557/mrs2004.238

Liu, 2003, Molecular memories that survive silicon device processing and real-world operation, Science, 302, 1543, 10.1126/science.1090677

Roth, 2000, Molecular approach toward information storage based on the redox properties of porphyrins in self-assembled monolayers, J Vac Sci Technol B, 18, 2359, 10.1116/1.1310657

Jurow, 2010, Porphyrins as molecular electronic components of functional devices, Coord Chem Rev, 254, 2297, 10.1016/j.ccr.2010.05.014

Miller, 2008, Electrochemical capacitors for energy management, Science, 321, 651, 10.1126/science.1158736

Merlet, 2012, On the molecular origin of supercapacitance in nanoporous carbon electrodes, Nat Mater, 11, 306, 10.1038/nmat3260

Sharma, 2010, A review on electrochemical double-layer capacitors, Energy Convers Manage, 51, 2901, 10.1016/j.enconman.2010.06.031

Largeot, 2008, Relation between the ion size and pore size for an electric double-layer capacitor, J Am Chem Soc, 130, 2730, 10.1021/ja7106178

Chen, 2007, A molecular memory device formed by HfO2 encapsulation of redox-active molecules, Appl Phys Lett, 91, 1

Chen, 2003, Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors, Phys Rev Lett, 90, 10.1103/PhysRevLett.90.257403

Madani, 2017, The double wall boron nitride nanotube: nano-cylindrical capacitor, Orient J Chem, 33, 1213, 10.13005/ojc/330320

Jansen, 1958, Molecular theory of the dielectric constant, Phys Rev, 112, 434, 10.1103/PhysRev.112.434

Kumar, 2007, Molecular diodes and applications, Recent Pat Nanotechnol, 1, 51, 10.2174/187221007779814790

Fabrizio, 1997, Nonmagnetic molecular Jahn-Teller Mott insulators, Phys Rev B Condens Matter Mater Phys, 55, 13465, 10.1103/PhysRevB.55.13465

Mayor, 2003, Electric current through a molecular rod-relevance of the position of the anchor groups, Angew Chem Int Ed, 42, 5834, 10.1002/anie.200352179

Garner, 2018, Comprehensive suppression of single-molecule conductance using destructive σ-interference, Nature, 558, 416, 10.1038/s41586-018-0197-9

Meunier, 2000, Molecular modeling of electron trapping in polymer insulators, J Chem Phys, 113, 369, 10.1063/1.481802

Wannebroucq, 2018, New n-type molecular semiconductor-doped insulator (MSDI) heterojunctions combining a triphenodioxazine (TPDO) and the lutetium bisphthalocyanine (LuPc2) for ammonia sensing, Sens Actuators B Chem, 255, 1694, 10.1016/j.snb.2017.08.184

Tao, 2006, Electron transport in molecular junctions, Nat Nanotechnol, 1, 173, 10.1038/nnano.2006.130

Salahuddin, 2005, Transport effects on signal propagation in quantum wires, IEEE Trans Electron Dev, 52, 1734, 10.1109/TED.2005.852170

Tans, 1997, Individual single-wall carbon nanotubes as quantum wires, Nature, 386, 474, 10.1038/386474a0

Wang, 2016, Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes, Sci Rep, 6, 6

Dresselhaus, 2000, Phonons in carbon nanotubes, Adv Phys, 47, 705, 10.1080/000187300413184

Holmes, 2010, Control orientation of thickness and solution-grown nanowires silicon, Adv Sci, 287, 1471

Cahill, 2003, Nanoscale thermal transport, J Appl Phys, 93, 793, 10.1063/1.1524305

Zou, 2001, Phonon heat conduction in a semiconductor nanowire, J Appl Phys, 89, 2932, 10.1063/1.1345515

Mingo, 2008, Phonon transmission through defects in carbon nanotubes from first principles, Phys Rev B Condens Matter Mater Phys, 77, 3, 10.1103/PhysRevB.77.033418

Krittayavathananon, 2017, Improving single-carbon-nanotube-electrode contacts using molecular electronics, J Phys Chem Lett, 8, 3908, 10.1021/acs.jpclett.7b01771

Noori, 2017, High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires, Nanoscale, 9, 5299, 10.1039/C6NR09598D

Algethami, 2018, The conductance of porphyrin-based molecular nanowires increases with length, Nano Lett, 18, 4482, 10.1021/acs.nanolett.8b01621

Cnossen, 2017, Scavenger templates: a systems chemistry approach to the synthesis of porphyrin-based molecular wires, Chem Commun, 53, 10410, 10.1039/C7CC04289B

Ratner, 1998, Molecular wires: charge transport, mechanisms, and control, Ann New York Acad Sci, 852, 22, 10.1111/j.1749-6632.1998.tb09862.x

Wagner, 1996, Molecular optoelectronic gates, J Am Chem Soc, 118, 3996, 10.1021/ja9602657

Mirkin, 1992, Molecular electronics, Annu Rev Phys Chem, 43, 719, 10.1146/annurev.pc.43.100192.003443

Barbara, 1996, Contemporary issues in electron transfer research, J Phys Chem, 100, 13148, 10.1021/jp9605663

Sedghi, 2008, Single molecule conductance of porphyrin wires with ultralow attenuation, J Am Chem Soc, 130, 8582, 10.1021/ja802281c

Koepf, 2005, Building blocks for self-assembled porphyrinic photonic wires, Org Lett, 7, 1279, 10.1021/ol050033p

Iengo, 2002, Metallacycles of porphyrins as building blocks in the construction of higher order assemblies through axial coordination of bridging ligands: solution- and solid-state characterization of molecular sandwiches and molecular wires, J Am Chem Soc, 124, 1003, 10.1021/ja016162s

Ambroise, 2002, Weakly coupled molecular photonic wires: synthesis and excited-state energy-transfer dynamics, J Org Chem, 67, 3811, 10.1021/jo025561i

Robertson, 2003, A comparison of potential molecular wires as components for molecular electronics, Chem Soc Rev, 32, 96, 10.1039/b206919a

Ozawa, 2007, Synthesis of dendron-protected porphyrin wires and preparation of a one-dimensional assembly of gold nanoparticles chemically linked to the pi-conjugated wires, Langmuir, 23, 6365, 10.1021/la0634544

Linford, 1995, Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon, J Am Chem Soc, 117, 3145, 10.1021/ja00116a019

Hobza, 1994, Structure and properties of benzene-containing molecular clusters: nonempirical ab initio calculations and experiments, Chem Rev, 94, 1767, 10.1021/cr00031a002

Cooper, 1986, The electronic structure of the benzene molecule, Nature, 323, 699, 10.1038/323699a0

Kaliginedi, 2012, Correlations between molecular structure and single-junction conductance: a case study with oligo(phenylene-ethynylene)-type wires, J Am Chem Soc, 134, 5262, 10.1021/ja211555x

Stapleton, 2003, Self-assembled oligo(phenylene-ethynylene) molecular electronic switch monolayers on gold: structures and chemical stability, Langmuir, 19, 8245, 10.1021/la035172z

Grozema, 2002, Theoretical and experimental studies of the opto-electronic properties of positively charged oligo(phenylene vinylene)s: effects of chain length and alkoxy substitution, J Chem Phys, 117, 11366, 10.1063/1.1522374

Mishra, 2009, Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications, Chem Rev, 109, 1141, 10.1021/cr8004229

Linton, 2014, Oligo(p-phenyleneethynylene) (OPE) molecular wires: synthesis and length dependence of photoinduced charge transfer in OPEs with triarylamine and diaryloxadiazole end groups, Chemistry, 21, 3997, 10.1002/chem.201406080

Thiele, 2015, STM study of oligo(phenylene-ethynylene)s, New J Phys, 17, 2, 10.1088/1367-2630/17/5/053043

Cai, 2002, Chemical and potential-assisted assembly of thiolacetyl-terminated oligo(phenylene ethynylene)s on gold surfaces, Chem Mater, 14, 2905, 10.1021/cm011509b

Nuzzo, 1983, Adsorption of bifunctional organic disulfides on gold surfaces, J Am Chem Soc, 105, 4481, 10.1021/ja00351a063

Ulman, 1996, Formation and structure of self-assembled monolayers, Chem Rev, 96, 1533, 10.1021/cr9502357

Jenny, 2011, Phenyl-acetylene bond assembly: a powerful tool for the construction of nanoscale architectures, Eur J Org Chem, 2011, 4965, 10.1002/ejoc.201100176

Kushmerick, 2003, Understanding charge transport in molecular electronics, Ann New York Acad Sci, 1006, 277, 10.1196/annals.1292.019

Kushmerick, 2002, Effect of bond-length alternation in molecular wires, J Am Chem Soc, 124, 10654, 10.1021/ja027090n

Rosenthal, 1991, Phthalocyanines as photodynamic sensitizers, Photochem Photobiol, 53, 859, 10.1111/j.1751-1097.1991.tb09900.x

Spikes, 1986, Phthalocyanines as photosensitizers in biological systems and for the photodynamic therapy of tumors, Photochem Photobiol, 43, 691, 10.1111/j.1751-1097.1986.tb05648.x

Saiki, 2014, Capacitor-like behavior of molecular crystal β-Dicc[Ni(dmit)2], Chem Lett, 43, 1119, 10.1246/cl.140309

Rodríguez-Salcedo, 2017, Characterization of charge transfer mechanisms in the molecular capacitor β-DiCC[Ni(dmit)2] using TD–DFT methods, Comput Theor Chem, 1109, 36, 10.1016/j.comptc.2017.03.043

Braun, 1998, DNA-templated assembly and electrode attachment of a conducting silver wire, Nature, 391, 775, 10.1038/35826

Zhou, 2003, Simple fabrication of molecular circuits by shadow mask evaporation, Nano Lett, 3, 1371, 10.1021/nl034512y

Fuchs JN, Goerbig MO. Introduction to the physical properties of grapheme [Internet]. 2008 [cited 2018 Oct 16]. Available from: https://www.equipes.lps.u-psud.fr/m2structure/m2pdfpracticals/2-Lecture%20on%20graphene.pdf.

Dedkov, 2015, Graphene growth and properties on metal substrates, J Phys Condens Matter, 27, 10.1088/0953-8984/27/30/303002

Georgantzinos, 2010, Numerical investigation of elastic mechanical properties of graphene structures, Mater Des, 31, 4646, 10.1016/j.matdes.2010.05.036

Torres, 2017, Graphene chemistry, Chem Soc Rev, 46, 4385, 10.1039/C7CS90061A

Liu, 2012, Mechanical properties of graphene papers, J Mech Phys Solids, 60, 591, 10.1016/j.jmps.2012.01.002

Wang, 2011, A new approach for molecular electronic junctions with a multilayer graphene electrode, Adv Mater, 23, 755, 10.1002/adma.201003178

Liu, 2010, Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes, ACS Nano, 4, 3987, 10.1021/nn100877s

Di, 2008, Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors, Adv Mater, 20, 3289, 10.1002/adma.200800150

Wang, 2008, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett, 8, 323, 10.1021/nl072838r

Supur, 2018, Bottom-up, robust graphene ribbon electronics in all-carbon molecular junctions, ACS Appl Mater Interfaces, 10, 6090, 10.1021/acsami.7b19305

Jeong, 2018, Structural and charge transport properties of molecular tunneling junctions with single-layer graphene electrodes, J Korean Phys Soc, 72, 394, 10.3938/jkps.72.394

Dou, 2018, Selective interface transparency in graphene nanoribbon based molecular junctions, Nanoscale, 10, 4861, 10.1039/C7NR08564H

Zhong, 2014, Helical ribbons for molecular electronics, J Am Chem Soc, 136, 8122, 10.1021/ja503533y

Kimouche, 2015, Ultra-narrow metallic armchair graphene nanoribbons, Nat Commun, 6, 1, 10.1038/ncomms10177

Fang, 2016, Atomic and close-to-atomic scale manufacturing—a trend in manufacturing development, Front Mech Eng, 4, 325, 10.1007/s11465-016-0402-1

Sharath Kumar, 2018, Recent trends in the graphene-based sensors for the detection of hydrogen peroxide, AIMS Mater Sci, 5, 422, 10.3934/matersci.2018.3.422

Wang, 2017, Advance of mechanically controllable break junction for molecular electronics, Top Curr Chem, 375, 1

Dubois, 2018, Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices, Nat Commun, 9, 3433, 10.1038/s41467-018-05785-2

Vilan, 2017, Large-area, ensemble molecular electronics: motivation and challenges, Chem Rev, 117, 4248, 10.1021/acs.chemrev.6b00595

Mishra, 2016, Moletronics, Int J Sci Eng Res, 7, 25

Newton, 1984, Electron transfer reactions in condensed phases, Annu Rev Phys Chem, 35, 437, 10.1146/annurev.pc.35.100184.002253

Dutton, 1978, Reaction center of photosynthetic bacteria, Photochem Photobiol, 28, 939, 10.1111/j.1751-1097.1978.tb07733.x

Patil, 2018, A quantum biomimetic electronic nose sensor, Sci Rep, 8, 1, 10.1038/s41598-017-18346-2

Dubi, 2011, Colloquium: heat flow and thermoelectricity in atomic and molecular junctions, Rev Mod Phys, 83, 131, 10.1103/RevModPhys.83.131

Cui, 2018, Peltier cooling in molecular junctions, Nat Nanotechnol, 13, 122, 10.1038/s41565-017-0020-z

Wu, 2017, Thermoelectricity in vertical graphene-C60-graphene architectures, Sci Rep, 7, 1

Gould, 2005, Moletronics closes in on silicon, Mater Today, 8, 56, 10.1016/S1369-7021(05)70987-1