Advancements in Dual-Energy CT Applications for Musculoskeletal Imaging

Hatim Alabsi1, Saleh Alreshoodi2, Eugene Low2, Nadia Sultan2, Nicolas Murray2, Paul I. Mallinson2, Peter L. Munk2, Hugue A. Ouellette2
1Department of Radiology, Vancouver General Hospital, University of British Columbia, Vancouver, BC Canada
2Department of Radiology, Vancouver General Hospital, University of British Columbia, Vancouver, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kuo C, Grainge M, Zhang W, Doherty M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol. 2015;11(11):649–62.

Clarson L, Hider S, Belcher J, Heneghan C, Roddy E, Mallen C. Increased risk of vascular disease associated with gout: a retrospective, matched cohort study in the UK Clinical Practice Research Datalink. Ann Rheum Dis. 2015;74(4):642–7.

Yu K, Kuo C, Luo S, See L, Chou I, Chang H, et al. Risk of end-stage renal disease associated with gout: a nationwide population study. Arthritis Res Therapy. 2012;14(2):R83.

Kubota Y, McAdams-DeMarco M, Folsom A. Serum uric acid, gout, and venous thromboembolism: the atherosclerosis risk in communities study. Thromb Res. 2016;144:144–8.

Newberry S, FitzGerald J, Motala A, Booth M, Maglione M, Han D, et al. Diagnosis of gout: a systematic review in support of an American College of Physicians Clinical Practice Guideline. Ann Intern Med. 2017;166(1):27–36.

Breuer G, Bogot N, Nesher G. Dual-energy computed tomography as a diagnostic tool for gout during intercritical periods. Int J Rheum Dis. 2016;12:1337–41.

Harrold L, Mazor K, Negron A, Ogarek J, Firneno C, Yood R. Primary care providers’ knowledge, beliefs and treatment practices for gout: results of a physician questionnaire. Rheumatology. 2013;52(9):1623–9.

Khosla S, Thiele R, Baumhauer JF. Ultrasound guidance for intra-articular injections of the foot and ankle. Foot Ankle Int. 2009;30(9):886–90.

Hasselbacher P. Arthritis and rheumatism: variation in synovial fluid analysis by hospital laboratories. Arthritis Rheum. 1987;30(6):637–42.

Schumacher HR, Sieck MS, Rothfuss MS, Clayburne GM. Arthritis and rheumatism: reproducibility of synovial fluid analyses. A study among four laboratories. Arthritis Rheum. 1986;29(6):770–4.

Mcgill N, York H. Reproducibility of synovial-fluid examination for crystals. Aust N Z J Med. 1991;21(5):710–3.

Segal JB, Segal JB, Albert D. Arthritis and rheumatism: diagnosis of crystal-induced arthritis by synovial fluid examination for crystals: Lessons from an imperfect test. Arthritis care Res. 1999;12(6):376–80.

Graf SW, Buchbinder R, Zochling J, Whittle SL. The accuracy of methods for urate crystal detection in synovial fluid and the effect of sample handling: a systematic review. Clin Rheumatol. 2013;32(2):225–32.

Wallace SL, Robinson H, Masi AT, Decker JL. Arthritis and rheumatism: preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum. 1977;20(3):895–900.

Malik A, Schumacher HR, Dinnella JE, Clayburne GM. Journal of clinical rheumatology: clinical diagnostic criteria for gout: comparison with the gold standard of synovial fluid crystal analysis. JCI Rheumatol. 2009;15(1):22–4.

Janssens HJEM, Janssen M, van de Lisdonk EH, et al. Limited validity of the American College of Rheumatology criteria for classifying patients with gout in primary care. Ann Rheum Dis. 2010;69:1097–102.

Taylor WJ, Fransen J, Jansen TL, Dalbeth N, Schumacher HR, Brown M, et al. Study for updated gout classification criteria: identification of Features to Classify Gout. Arthritis Care Res. 2015;67(9):1304–15.

Stamp L, Searle M, ODonnell J, Chapman P. Gout in solid organ transplantation: a challenging clinical problem. Drugs. 2005;65(18):2593–611.

Petsch C, Araujo EG, Englbrecht M, Bayat S, Cavallaro A, Hueber AJ, et al. Prevalence of monosodium urate deposits in a population of rheumatoid arthritis patients with hyperuricemia. Semin Arthritis Rheum. 2016;45(6):663–8.

Merola J, Wu S, Han J, Choi H, Qureshi A. Psoriasis, psoriatic arthritis and risk of gout in US men and women. Ann Rheum Dis. 2015;74(8):1495–500.

Li T, Lue K, Lin Z, Lu K. Arthroscopic treatment for gouty tophi mimicking an intra-articular synovial tumor of the knee. Arthroscopy. 2006;22(8):910.e1–3.

Aslam N, Lo S, McNab I. Acta orthopaedica belgica: gouty flexor tenosynovitis mimicking infection: a case report emphasising the value of ultrasound in diagnosis. Acta Orthop Belg. 2004;70(4):368–70.

• Forbess L, Fields T. The broad spectrum of urate crystal deposition: unusual presentations of gouty tophi. Semin Arthritis Rheum. 2012;42(2):146–54. (Atypical clinical presentations of gouty tophi. They reported groups at risk and unusual locations of MSU).

• Neogi T, Jansen, Tim L. Th. A, Dalbeth N, Fransen J, Schumacher HR, Berendsen D, et al. Gout classification criteria: an American College of Rheumatology/European League Against Rheumatism Collaborative Initiative: ACR/EULAR classification criteria for gout. Arthritis Rheumatol. 2015;67(10):2557–68. (A study presenting classification criteria for gout. It includes DECT and US in addition to other clinical parameters).

Nicolaou S, Yong-Hing CJ, Galea-Soler S, Hou DJ, Louis L, Munk P. Dual-energy CT as a potential new diagnostic tool in the management of gout in the acute setting. Am J Roentgenol. 2010;194(4):1072–8.

• Ogdie A, Taylor WJ, Weatherall M, Fransen J, Jansen TL, Neogi T, et al. Imaging modalities for the classification of gout: systematic literature review and meta-analysis. Ann Rheum Dis. 2015;2014;74(10):1868–74. (Study reporting the utility of imaging modalities in the classification of gout when compared to MSU as the gold standard. They did a systemic review of 11 studies. In their conclusion, US and DECT showed promise for gout classification).

• Bongartz T, Glazebrook K, Kavros S, Murthy N, Merry S, Franz W, et al. Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann Rheum Dis. 2015;74(6):1072–7. (Study reporting accuracy of DECT and impact on clinical decision making in cases of gout. It showed low sensitivity in recent-onset disease. However, the study demonstrated that DECT might aid to reach diagnosis of gout even if polarising microscopy of synovial fluid fails to demonstrate the presence of MSU crystals).

Baer A, Kurano T, Thakur U, Thawait G, Fuld M, Maynard J, et al. Dual-energy computed tomography has limited sensitivity for non-tophaceous gout: a comparison study with tophaceous gout. BMC Musculoskelet. Disord. 2016;17:91.

Dalbeth N, House M, Aati O, Tan P, Franklin C, Horne A, et al. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann Rheum Dis. 2015;74(5):908–11.

Kimura-Hayama E, Criales-Vera S, Nicolaou S, Betanzos JL, Rivera Y, Alberú J, et al. A pilot study on dual-energy computed tomography for detection of urate deposits in renal transplant patients with asymptomatic hyperuricemia. JCR. 2014;20(6):306–9.

Dalbeth N, Aati O, Kalluru R, Gamble GD, Horne A, Doyle AJ, et al. Relationship between structural joint damage and urate deposition in gout: a plain radiography and dual-energy CT study. Ann Rheum Dis. 2015;74:1030–6.

Choi HK, Al-Arfaj AM, Eftekhari A, Munk PL, Shojania K, Reid G, et al. Dual energy computed tomography in tophaceous gout. Ann Rheum Dis. 2009;68:1609–12.

Rajan A, Aati O, Kalluru R, Gamble GD, Horne A, Doyle AJ, et al. Lack of change in urate deposition by dual-energy computed tomography among clinically stable patients with long-standing tophaceous gout: a prospective longitudinal study. Arthritis Res Therapy. 2013;15:R160.

Choi HK, Burns LC, Shojania K, Koenig N, Reid G, Abufayyah M, et al. Dual energy CT in gout: a prospective validation study. Ann Rheum Dis. 2012;71:1466–71.

Dobrzyński L, Fornalski KW, Feinendegen LE. Cancer mortality among people living in areas with various levels of natural background radiation. Dose-Response. 2015;13(3):155932581559239.

• Bayat S, Aati O, Rech J, Sapsford M, Cavallaro A, Lell M, et al. Development of a dual-energy computed tomography scoring system for measurement of urate deposition in gout: DECT scoring system in gout. Arthritis Care Res. 2016;68(6):769–75. (Study reporting semiquantitative scoring system for gout. It includes only ankles and feet).

•• Mallinson P, Coupal T, Reisinger C, Chou H, Munk P, Nicolaou S, et al. Artifacts in dual-energy CT gout protocol: a review of 50 suspected cases with an artifact identification guide. Am J Roentgenol. 2014;203(1):W103–9. (Presents DECT artifacts in gout imaging).

Carr A, Doyle AJ, Dalbeth N, Aati O, McQueen FM. Dual-energy CT of urate deposits in costal cartilage and intervertebral disks of patients with tophaceous gout and age-matched controls. AJR. 2016;206(5):1063–7.

Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. Radiographics. 2004;24(6):1679–91.

Nicolaou S, Liang T, Murphy DT, Korzan JR, Ouellette H, Munk P. Dual-energy CT: a promising new technique for assessment of the musculoskeletal system. AJR. 2012;199(5 Suppl):S78–86.

Vande Berg B, Malghem J, Maldague B, Lecouvet F. Multi-detector CT imaging in the postoperative orthopedic patient with metal hard-ware. Eur J Radiol. 2006;60(3):470–9.

Link TM, Berning W, Scherf S, Joosten U, Joist A, Engelke K, et al. CT of metal implants: reduction of artifacts using an extended CT scale technique. J Comput Assist Tomogr. 2000;24(1):165–72.

Pessis E, Campagna R, Sverzut JM, et al. Virtual monochromatic spectral imaging with fast kilovoltage switching: reduction of metal artifacts at CT. Radiographics. 2013;33(2):573–83.

Yu L, Christner JA, Leng S, Wang J, Fletcher JG, McCollough CH. Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys. 2011;38(12):6371–9.

Matsumoto K, Jinzaki M, Tanami Y, Ueno A, Yamada M, Kuribayashi S. Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology. 2011;259(1):257–62.

Meinel FG, Bischoff B, Zhang Q, Bamberg F, Reiser MF, Johnson TR. Metal artifact reduction by dual-energy computed tomography using energetic extrapolation: a systematically optimized protocol. Invest Radiol. 2012;47(7):406–14.

Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21(7):1424–9.

Zhou C, Zhao YE, Luo S, et al. Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol. 2011;18(10):1252–7.

Lee YH, Park KK, Song HT, Kim S, Suh JS. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol. 2012;22(6):1331–40.

• Lewis M, Reid K, Toms AP. Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements. Skeletal Radiol. 2013;42(2):275–82. (The article provides coverage on the basic physics of the metal reduction application. Also, pointed out that the streak artifacts get significantly worse after 150 keV level.).

Guggenberger R, Winklhofer S, Osterhoff G, et al. Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol. 2012;22(11):2357–64.

Tanaka R, Hayashi T, Ike M, Noto Y, Goto TK. Reduction of dark-band-like metal artifacts caused by dental implant bodies using hypothetical monoenergetic imaging after dual-energy computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115(6):833–8.

Wang Y, Qian B, Li B, et al. Metal artifacts reduction using monochromatic images from spectral CT: evaluation of pedicle screws in patients with scoliosis. Eur J Radiol. 2013;82(8):e360–6.

•• Pessis E et al, reduction of metal artifact with dual-energy CT: virtual monospectral imaging with fast kilovoltage switching and metal artifact reduction software. Semin Musculoskelet Radiol. 2015;19(5):446–55. (Good article with concise overview on the metal reduction application with insight on the advantages and disadvantages of MARS.).

Brook OR, Gourtsoyianni S, Brook A, Mahadevan A, Wilcox C, Raptopoulos V. Spectral CT with metal artifacts reduction software for improvement of tumor visibility in the vicinity of gold fiducial markers. Radiology. 2012;263(3):696–705.

Huang JY, Kerns JR, Nute JL, et al. An evaluation of three commercially available metal artifact reduction methods for CT imaging. Phys Med Biol. 2015;60(3):1047–67.

Mandalia V, Henson JH. Traumatic bone bruising: a review article. Eur J Radiol. 2008;67(1):54–61.

Mallinson P, Coupal T, McLaughlin P, et al. Dual-energy CT for the musculoskeletal system. Radiol. 2016;281(3):690–707.

• Pache G, Krauss B, Strohm P, et al. Dual energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions-feasibility study. Radiology 2010;256(2):617–624. (Landmark study utilizing DECT for bone marrow oedema detection with MRI as the reference standard, found that sensitivity and specificity of DECT as 86.4% and 95.5%).

Guggenberger R, Gnannt R, Hodler J, et al. Diagnostic performance of dual-energy CT for the detection of traumatic bone marrow lesions in the ankle; comparison with MR imaging. Radiology. 2012;264(1):164–73.

Ai S, Qu M, Glazebrook KN, et al. Use of dual-energy CT and virtual non-calcium techniques to evaluate post-traumatic bone bruises in knees in the subacute setting. Skeletal Radiol. 2014;43(9):1289–95.

Pache G, Bulla S, Baumann T, et al. Dose reduction does not affect detection of bone marrow lesions with dual-energy CT virtual noncalcium technique. Acad Radiol. 2012;19(12):1539–45.

Wang CK, Tsai JM, Chuang MT, Wang MT, Huang KY, Lin RM. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology. 2013;269(2):525–33.

Bierry G, Venkatasamy A, Kremer S, Dosch JC, Dietemann JL. Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI. Skeletal Radiol. 2014;43(4):485–92.

Reddy T, McLaughlin PD, Mallinson PI, et al. Detection of occult, undisplaced hip fractures with a dual-energy CT algorithm targeted to detection of bone marrow edema. Emerg Radiol. 2015;22(1):25–9.

• Thomas C, Schabel C, Krauss B, et al. Dual-energy CT: virtual calcium subtraction for assessment of bone marrow involvement of the spine in multiple myeloma. AJR 2015;204:324–31. (Detection of multiple myeloma using DECT VNCa technique with sensitivity of 75%).

Genant HK, Boyd D. Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol. 1977;12(6):545–51.

Wesarg S, Kirschner M, Becker M, Erdt M, Kafchitsas K, Khan MF. Dual-energy CT based assessment of the trabecular bone in vertebrae. Methods Inf Med. 2012;51(5):398–405.

Wichmann JL, Booz Wesarg S, et al. Dual-Energy CT-based phantomless in vivo three-dimensional bone mineral density assessment of the lumbar spine. Radiology. 2014;271(3):778–84.

Wait J, Cody D, Jones A, et al. Performance evaluation of material decomposition with rapid-kilovoltage-switching dual-energy CT and implications for assessing bone mineral density. AJR. 2015;204(6):1234–41.

• Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20(11):2707–14.(No comparison for radiation doses between DECT and DXA, rendering limited clinical application of DECT for bone mineral density).

Sunagawa T, Ishida O, Ishiburo M, Suzuki O, Yasunaga Y, Ochi M. Three-dimensional computed tomography imaging: its applicability in the evaluation of extensor tendons in the hand and wrist. J Comput Assist Tomogr. 2005;29(1):94–8.

Dalrymple NC, Prasad SR, Freckleton MW, Chintapalli KN. Informatics in radiology (infoRAD): introduction to the language of three-dimensional imaging with multidetector CT. RadioGraphics. 2005;25(5):1409–28.

Höglund M, Tordai P, Engkvist O. Ultrasonography for the diagnosis of soft tissue conditions in the hand. Scand J Plast Reconstr Surg Hand Surg. 1991;25(3):225–31.

Sun C, Miao F, Wang XM, et al. An initial qualitative study of dual-energy CT in the knee ligaments. Surg Radiol Anat. 2008;30(5):443–7.

• Peltola EK, Koskinen SK. Dual-energy computed tomography of cruciate ligament injuries in acute knee trauma. Skeletal Radiol. 2015;44:1295–1301. (Study evaluating cruciate ligament injuries and evaluating usefulness of collagen specific color mapping and dual energy bone removal in the evaluation of cruciate ligaments and popliteus tendon).

• Mallinson PI, Stevens C, Reisinger C, Nicolaou S, Munk PL, Ouellette H. Achilles tendinopathy and partial tear diagnosis using dual-energy computed tomography collagen material decomposition application. J Comput Assist Tomogr. 2013;37(3):475–7. (Study evaluating cruciate ligament injuries and evaluating usefulness of collagen specific color mapping and dual energy bone removal in the evaluation of cruciate ligaments and popliteus tendon).