Advanced treatment of zircaloy cladding high-temperature oxidation in severe accident code calculations

Nuclear Engineering and Design - Tập 232 Số 1 - Trang 75-84 - 2004
G. Schanz1, B. Adroguer2, A. M. Volchek3
1Forschungszentrum Karlsruhe GmbH, Institut für Materialforschung (FZK, IMF III), Karlsruhe, Germany
2Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, France
3Nuclear Safety Institute of Russian Research Center “Kurchatov Institute” (NSI RRC KI), Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abriata, 1986, The O–Zr (oxygen–zirconium) system, Bull. Alloy Phase Diagrams, 7, 116, 10.1007/BF02881546

Adroguer, B., 2000. Clad behaviour and hydrogen production. In: Proceedings of the EUROCOURSE on Analysis of Severe Accidents in LWR, Madrid, 13–17 October 1997.

Allison, C.M., et al., 1995. SCDAP/RELAP5/MOD 3.1 Code Manual, MATPRO—a Library of Material Properties for Light–Water-Reactor Accident Analysis, NUREG/CR-6150, EGG-2720, vol. 4, EG&G Idaho Inc., Idaho Falls, USA.

Cathcart, J.V., et al., 1977. Zirconium metal–water oxidation kinetics, IV: reaction rate studies. ORNL/NUREG-17.

Chung, H.M., Thomas, G.R., 1984. High-temperature oxidation of zircaloy in hydrogen–steam mixtures. Zirconium in the Nuclear Industry. In: Franklin, D.G., Adamson, R.B. (Eds.), Proceedings of the Sixth International Symposium, Vancouver, Canada, ASTM STP 824, American Society for Testing and Materials, pp. 793–809.

Fichot, F., et al., 2001. ICARE/CATHARE: a computer code for analysis of severe accidents in LWRs, ICARE2 V3mod1: description of physical models. Technical note DRS/SEMAR 00/03, July 2001.

Haste, T.J., et al., 1996. Nuclear science and technology. In-vessel core degradation in LWR severe accidents. Final Report to European Commission, EUR 16695 EN.

Hofmann, P., et al., 1989. Chemical interactions of reactor core materials up to very high temperatures. KfK 4485, Karlsruhe.

Hofmann, P., Neitzel, H.J., 1987. Experimental and theoretical results of cladding oxidation under severe fuel-damage conditions. Zirconium in the nuclear industry. In: Adamson, R.B., Van Swan, L.F.P (Eds.), Proceedings of the seventh International Symposium, ASTM STP 939, American Society for Testing and Materials, Philadelphia, pp. 504–538.

Iglesias, 1985, Verification of the FROM model for zircaloy oxidation during temperature transients, J. Nucl. Mater, 130, 36, 10.1016/0022-3115(85)90292-2

Kinnersly, S.R., et al., 1991. In-vessel core degradation in LWR severe accidents: a State of the Art Report to CSNI. January 1991. NEA/CSNI/R (91) 12 OECD Nuclear Energy Agency, Paris, France.

Leistikow, 1987, Oxidation kinetics and related phenomena of zircaloy-4 fuel cladding exposed to high temperature steam and hydrogen–steam mixtures under PWR accident conditions, Nucl. Eng. Des, 103, 65, 10.1016/0029-5493(87)90286-X

Olander, 1994, Materials chemistry and transport modeling for severe accident analyses in light–water reactors, I: external cladding oxidation, Nucl. Eng. Des, 148, 253, 10.1016/0029-5493(94)90113-9

Pawel, 1979, Oxygen diffusion in the oxide and alpha phases during reaction of zircaloy-4 with steam from 1000 to 1500°C, J. Electrochem. Soc, 126, 1111, 10.1149/1.2129228

Prater, J.T., Courtright, E.L., 1987. Oxidation of zircaloy-4 in steam at 1300 to 2400°C. Zirconium in the nuclear industry. In: Adamson, R.B., Van Swan, L.F.P. (Eds.), Proceedings of the Seventh International Symposium, ASTM STP 939, American Society for Testing and Materials, Philadelphia, pp. 489–503.

Schanz, G., 2003. Recommendations and Supporting Information on the Choice of Zirconium Oxidation Models in Severe Accident Codes. SAM-COLOSS-P043, Forschungszentrum Karlsruhe, Germany, FZKA 6827.

Urbanic, 1978, High-temperature oxidation of zircaloy-2 and zircaloy-4 in steam, J. Nucl. Mater, 75, 251, 10.1016/0022-3115(78)90006-5

Voltchek, A., et al., 1995. Assessment of the Modified ICARE2 Code Oxygen Diffusion Model for UO2/Zr/H2O Interactions. Technical committee IAEA, Dimitrovgrad, Russia, October 1995.