Advanced monitoring of hydroponic solutions using ion-selective electrodes and the internet of things: a review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahn T-I, Son J-E (2011) Changes in ion balance and individual ionic contributions to EC reading at different renewal intervals of nutrient solution under EC-based nutrient control in closed-loop soilless culture for sweet peppers (Capsicum annum L’.Fiesta’). Horticultural Sci Tech 29:29–35
Badamasi YA (2014) The working principle of an Arduino. 2014 11th international conference on electronics, computer and computation (ICECCO). IEEE, New York, pp 1–4
Bailey B, Haggett B, Hunter A, Albery W, Svanberg L (1988) Monitoring nutrient film solutions using ion-selective electrodes. J Agric Eng Res 40:129–142. https://doi.org/10.1016/0021-8634(88)90110-2
Bamsey M, Berinstain A, Dixon M (2012a) Development of a potassium-selective optode for hydroponic nutrient solution monitoring. Anal Chim Acta 737:72–82. https://doi.org/10.1016/j.aca.2012.05.024
Bamsey M, Graham T, Thompson C, Berinstain A, Scott A, Dixon M (2012b) Ion-specific nutrient management in closed systems: the necessity for ion-selective sensors in terrestrial and space-based agriculture and water management systems. Sensors 12:13349–13392. https://doi.org/10.3390/s121013349
Bamsey MT, Berinstain A, Dixon MA (2014) Calcium-selective optodes for the management of plant nutrient solutions. Sens Actuators, B Chem 190:61–69. https://doi.org/10.1016/j.snb.2013.08.051
Ban B, Lee J, Ryu D, Lee M, Eom TD (2020) Nutrient solution management system for smart farms and plant factory. 2020 international conference on information and communication technology convergence (ICTC). IEEE, New York, pp 1537–1542
Barrett-Lennard E, Robson A, Greenway H (1982) Effect of phosphorus deficiency and water deficit on phosphatase activities from wheat leaves. J Exp Bot 33:682–693. https://doi.org/10.1093/jxb/33.4.682
Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22. https://doi.org/10.1007/s10311-016-0600-4
Cho W-J, Kim H-J, Jung D-H, Kim D-W, Ahn TI, Son J-E (2018) On-site ion monitoring system for precision hydroponic nutrient management. Comput Electron Agric 146:51–58. https://doi.org/10.1016/j.compag.2018.01.019
Cho WJ, Kim H-J, Jung DH, Kang CI, Choi G-L, Son J-E (2017) An embedded system for automated hydroponic nutrient solution management. Trans ASABE 60:1083–1096. https://doi.org/10.13031/trans.12163
de Azevedo CAV, de Queiroz Almeida Azevedo MR, Fernandes JD, da Silva CR, Fernandes PD (2018) Monitoring, calibration and maintenance of optimized nutrient solutions in curly lettuce (Lactuca sativa, L.) hydroponic cultivation. Australian J Crop Sci 12, 572. Doi: https://doi.org/10.3316/informit.644712196540441
De Marco R, Phan C (2003) Determination of phosphate in hydroponic nutrient solutions using flow injection potentiometry and a cobalt-wire phosphate ion-selective electrode. Talanta 60:1215–1221. https://doi.org/10.1016/S0039-9140(03)00229-7
Deyhimi F (1999) A method for the determination of potentiometric selectivity coefficients of ion-selective electrode in the presence of several interfering ions. Talanta 50:1129–1134. https://doi.org/10.1016/S0039-9140(99)00194-0
Domingues DS, Takahashi HW, Camara CA, Nixdorf SL (2012) Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Comput Electron Agric 84:53–61. https://doi.org/10.1016/j.compag.2012.02.006
Eltez R, Tüzel Y, Gül A, Tüzel I, Duyar H (2000) Effects of different EC levels of nutrient solution on greenhouse tomato growing. Int Sympo Tech Control Salin Horticultur Product 573:443–448. https://doi.org/10.17660/ActaHortic.2002.573.53
Erne D, Stojanac N, Ammann D, Hofstetter P, Pretsch E, Simon W (1980) Lipophilic Di-and triamides as ionophores for alkaline earth metal cations. Helv Chim Acta 63:2271–2279. https://doi.org/10.1002/hlca.19800630816
Fujita K, Okada M, Lei K, Ito J, Ohkura K, Adu-Gyamfi J, Mohapatra P (2003) Effect of P-deficiency on photoassimilate partitioning and rhythmic changes in fruit and stem diameter of tomato (Lycopersicon esculentum) during fruit growth. J Exp Bot 54:2519–2528. https://doi.org/10.1093/jxb/erg273
Fukao Y, Kitazumi Y, Kano K, Shirai O (2018) Construction of nitrate-selective electrodes and monitoring of nitrates in the hydroponic solutions. Anal Sci 18P333. Doi:https://doi.org/10.2116/analsci.18P333
Ganmore-Neumann R, Kafkafi U (1980) Root temperature and percentage NO3−/NH4+ effect on tomato plant development I. Morphology and Growth 1. Agron J 72:758–761. https://doi.org/10.2134/agronj1980.00021962007200050016x
Garcíay García A, Dourado-Neto D, Basanta MdV, López Ovejero RF, Favarin JL (2003) Logistic rice model for dry matter and nutrient uptake. Scientia Agricola 60:481–488. https://doi.org/10.1590/S0103-90162003000300011
Geilfus CM (2019) Controlled environment horticulture: improving quality of vegetables and medicinal plants. Springer Nature.
Ghorbani R, Wilcockson S, Koocheki A, Leifert C (2008) Soil management for sustainable crop disease control: a review. Environ Chem Lett 6:149–162
Ginting C (2008) Pengaruh suhu zona perakaran terhadap pertumbuhan dan kadar klorofil tanaman selada sistem hidroponik. J Agriplus 18:169–178. https://doi.org/10.22146/ipas.60032
Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochem Biosens-Sens Princ Architect Sens 8:1400–1458. https://doi.org/10.3390/s80314000
Guo W, Nazim H, Liang Z, Yang D (2016) Magnesium deficiency in plants: an urgent problem. The Crop J 4:83–91. https://doi.org/10.1016/j.cj.2015.11.003
Hafsi C, Debez A, Abdelly C (2014) Potassium deficiency in plants: effects and signaling cascades. Acta Physiol Plant 36:1055–1070. https://doi.org/10.1007/s11738-014-1491-2
Hafsi C, Falleh H, Saada M, Rabhi M, Mkadmini K, Ksouri R, Abdelly C, Smaoui A (2016) Effects of potassium supply on growth, gas exchange, phenolic composition, and related antioxidant properties in the forage legume Sulla carnosa. Flora 223:38–45. https://doi.org/10.1016/j.flora.2016.04.012
Hagassou D, Francia E, Ronga D, Buti M (2019) Blossom end-rot in tomato (Solanum lycopersicum L.): A multi-disciplinary overview of inducing factors and control strategies. Sci Hortic 249:49–58. https://doi.org/10.1016/j.scienta.2019.01.042
Han HJ, Kim HJ, Jung DH, Cho WJ, Cho YY, Lee GI (2020a) Real-time nutrient monitoring of hydroponic solutions using an ion-selective electrode-based embedded system. 시설원예ㆍ식물공장 29, 141–152. https://doi.org/10.12791/KSBEC.2020.29.2.141
Han H-J, Kim H-J, Jung D-H, Cho W-J, Cho Y-Y, Lee G-I (2020) Real-time nutrient monitoring of hydroponic solutions using an ion-selective electrode-based embedded system. Protec Horticulture Plant Fact 29:141–152. https://doi.org/10.12791/KSBEC.2020.29.2.141
Han H, Jung DH, Kim HJ, Lee TS, Kim HS, Kim HY, Park SH (2020c) Application of a spectroscopic analysis-based portable sensor for phosphate quantitation in hydroponic solutions. J Sens https://doi.org/10.1155/2020/9251416
Heinen M, Harmanny K (1991) Evaluation of the performance of ion-selective electrodes in an automated NFT system. I Int Workshop Sens Horticulture 304:273–280. https://doi.org/10.17660/ActaHortic.1992.304.31
Helmy H, Nursyahid A, Setyawan TA, Hasan A (2016) Nutrient film technique (NFT) hydroponic monitoring system. JAICT 1. https://doi.org/10.32497/jaict.v1i1.425
Herman H, Adidrana D, Surantha N, Suharjito S (2019) Hydroponic nutrient control system based on internet of things. CommIT (Communication and Information Technology) Journal 13, 105–111. https://doi.org/10.21512/commit.v13i2.6016
Hermans C, Vuylsteke M, Coppens F, Cristescu SM, Harren FJ, Inzé D, Verbruggen N (2010) Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytol 187:132–144. https://doi.org/10.1111/j.1469-8137.2010.03257.x
Hussain A, Iqbal K, Aziem S, Mahato P, Negi A (2014) A review on the science of growing crops without soil (soilless culture)-a novel alternative for growing crops. Int J Agric Crop Sci 7:833
Jae-Won C, Trung TT, Thien TLH, Geon-Soo P, Van Dang C, Jong-Wook K (2018) A nutrient deficiency prediction method using deep learning on development of tomato fruits. 2018 International conference on fuzzy theory and its applications (iFUZZY). IEEE, New York, pp 338–341
Jiang S, Sun J, Tian Z, Hu H, Michel EJ, Gao J, Jiang D, Cao W, Dai T (2017) Root extension and nitrate transporter up-regulation induced by nitrogen deficiency improves nitrogen status and plant growth at the seedling stage of winter wheat (Triticum aestivum L.). Environ Exp Bot 141:28–40. https://doi.org/10.1016/j.envexpbot.2017.06.006
Jung D-H, Kim H-J, Cho W-J, Park SH, Yang S-H (2019) Validation testing of an ion-specific sensing and control system for precision hydroponic macronutrient management. Comput Electron Agric 156:660–668. https://doi.org/10.1016/j.compag.2018.12.025
Jung DH, Kim H-J, Choi GL, Ahn T-I, Son J-E, Sudduth KA (2015) Automated lettuce nutrient solution management using an array of ion-selective electrodes. Trans ASABE 58:1309–1319. https://doi.org/10.13031/trans.58.11228
Kim H-J, Hummel JW, Sudduth KA, Birrell SJ (2007) Evaluation of phosphate ion-selective membranes and cobalt-based electrodes for soil nutrient sensing. Trans ASABE 50:415–425. https://doi.org/10.13031/2013.22633
Kim H-J, Hummel JW, Sudduth KA, Motavalli PP (2007) Simultaneous analysis of soil macronutrients using ion-selective electrodes. Soil Sci Soc Am J 71:1867–1877. https://doi.org/10.2136/sssaj2007.0002
Kim H-J, Kim D-W, Kim WK, Cho W-J, Kang CI (2017) PVC membrane-based portable ion analyzer for hydroponic and water monitoring. Comput Electron Agric 140:374–385. https://doi.org/10.1016/j.compag.2017.06.015
Kim H-J, Kim W-K, Roh M-Y, Kang C-I, Park J-M, Sudduth KA (2013) Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes. Comput Electron Agric 93:46–54. https://doi.org/10.1016/j.compag.2013.01.011
Kim H-J, Son D-W, Kwon S-G, Roh M-Y, Kang C-I, Jung H-S (2011) Determination of inorganic phosphate in paprika hydroponic solution using a laboratory-made automated test stand with cobalt-based electrodes. J Biosyst Eng 36:326–333. https://doi.org/10.5307/JBE.2011.36.5.326
Kim H-J, Sudduth KA, Hummel JW (2009) Soil macronutrient sensing for precision agriculture. J Environ Monit 11:1810–1824. https://doi.org/10.1039/B906634A
Knight RS, Lefsrud M (2017) Automated Nutrient Sensing and Recycling. 2017 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, p. 1. Doi:https://doi.org/10.13031/aim.201701609
Ko MT, Ahn TI, Cho YY, Son JE (2013) Uptake of nutrients and water by paprika (Capsicum annuum L.) as affected by renewal period of recycled nutrient solution in closed soilless culture. Hortic Environ Biotechnol 54:412–421. https://doi.org/10.1007/s13580-013-0068-0
Ko MT, Ahn TI, Shin JH, Son JE (2014) Effects of renewal pattern of recycled nutrient solution on the ion balance in nutrient solutions and root media and the growth and ion uptake of paprika (Capsicum annuum L.) in closed soilless cultures. 원예과학기술지 32, 463–472. Doi:https://doi.org/10.7235/hort.2014.13134
Koryta J (1990) Theory and applications of ion-selective electrodes. Part 8. Anal Chim Acta 233:1–30. https://doi.org/10.1016/S0003-2670(00)83457-1
Lakshmanan R, Djama M, Selvaperumal SK, Abdulla R (2020) Automated smart hydroponics system using internet of things. Int J Electric Comput Eng (IJECE) 10:6389–6398. https://doi.org/10.11591/ijece.v10i6.pp6389-6398
Lee JY, Rahman A, Azam H, Kim HS, Kwon MJ (2017) Characterizing nutrient uptake kinetics for efficient crop production during Solanum lycopersicum var. cerasiforme Alef. growth in a closed indoor hydroponic system. PloS one 12, e0177041. https://doi.org/10.1371/journal.pone.0177041
Li H-X, Chen Z-J, Ting Z, Yan L, ZHOU, J.-B., (2018) High potassium to magnesium ratio affected the growth and magnesium uptake of three tomato (Solanum lycopersicum L.) cultivars. J Integr Agric 17:2813–2821. https://doi.org/10.1016/S2095-3119(18)61949-5
Li SX, Wang ZH, Stewart B (2013) Responses of crop plants to ammonium and nitrate N. Advances in agronomy. Elsevier, Netherland, pp 205–397
Lobit P, López-Pérez L, Cárdenas-Navarro R, Castellanos-Morales V, Ruiz-Corro R (2007) Effect of ammonium/nitrate ratio on growth and development of avocado plants under hydroponic conditions. Can J Plant Sci 87:99–103. https://doi.org/10.4141/P06-029
Mahmoud E, El Baroudy A, Ali N, Sleem M (2020) Soil amendment with nanoresidues from water treatment increases P adsorption in saline soils. Environ Chem Lett 18:171–179. https://doi.org/10.1007/s10311-019-00917-6
Marquez A, Betti M, Garcia-Calderon M, Credali A, Diaz P, Monza J (2007) Primary and secondary nitrogen assimilation in Lotus japonicus and the relationship with drought stress. Lotus Newsl 37:71–73
Marschner H (2011) Marschner's mineral nutrition of higher plants. Academic press
Martínez F, Oliveira JA, Calvete EO, Palencia P (2017) Influence of growth medium on yield, quality indexes and SPAD values in strawberry plants. Sci Hortic 217:17–27. https://doi.org/10.1016/j.scienta.2017.01.024
Maucieri C, Nicoletto C, Van Os E, Anseeuw D, Van Havermaet R, Junge R (2019) Hydroponic technologies. Aquaponics food production systems. Springer, New York, pp 77–110
Mehra M, Saxena S, Sankaranarayanan S, Tom RJ, Veeramanikandan M (2018) IoT based hydroponics system using deep neural networks. Comput Electron Agric 155:473–486. https://doi.org/10.1016/j.compag.2018.10.015
Meyerhoff M, Opdycke W (1986) Ion-selective electrodes. Advances in clinical chemistry. Elsevier, Netherland, pp 1–47
Mishra P, Jimmy L, Ogunmola GA, Phu TV, Jayanthiladevi A, Latchoumi T (2020) Hydroponics cultivation using real time iot measurement system. Journal of physics: conference series. IOP Publishing, p 012040. https://doi.org/10.1088/1742-6596/1712/1/012040
Mokhele B, Zhan X, Yang G, Zhang X (2012) Nitrogen assimilation in crop plants and its affecting factors. Can J Plant Sci 92:399–405. https://doi.org/10.4141/cjps2011-135
Moonrungsee N, Pencharee S, Jakmunee J (2015) Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil. Talanta 136:204–209. https://doi.org/10.1016/j.talanta.2015.01.024
Já Morgan, Eá Connolly (2013) Plant-soil interactions: nutrient uptake. Nature Education Knowledge 4:2
Morimoto T, Nishina H, Hashimoto Y, Watake H (1991) Sensor for ion-control-An approach to control of nutrient solution in hydroponics. I Int Workshop Sens Hortic 304:301–308. https://doi.org/10.17660/ActaHortic.1992.304.34
Müller M, Rouilly M, Rusterholz B, Maj-Żurawska M, Hu Z, Simon W (1988) Magnesium selective electrodes for blood serum studies and water hardness measurement. Microchim Acta 96:283–290. https://doi.org/10.1007/BF01236112
Mupangwa W, Chipindu L, Nyagumbo I, Mkuhlani S, Sisito G (2020) Evaluating machine learning algorithms for predicting maize yield under conservation agriculture in Eastern and Southern Africa. SN Appl Sci 2:1–14. https://doi.org/10.1007/s42452-020-2711-6
Ohyama T (2010) Nitrogen as a major essential element of plants. Nitrogen Assim Plants 37:1–17
Pan L, Zhang M, Ren H, Zheng J, Li Y (2017) Hydroponic nutrient detection of lettuce based on ISEs array. In: 2017 ASABE annual international meeting. American society of agricultural and biological engineers, p 1. Doi:https://doi.org/10.13031/aim.201700754
Paradiso R, De Pascale S, Aprea F, Barbieri G (2003) Effect of electrical conductivity levels of nutrient solution on growth, gas exchanges and yield of two gerbera cultivars in soilless system. Int Sympo Manag Greenhouse Crops Saline Environ 609:165–171. https://doi.org/10.17660/ActaHortic.2003.609.22
Pujos A, Morard P (1997) Effects of potassium deficiency on tomato growth and mineral nutrition at the early production stage. Plant Soil 189:189–196. https://doi.org/10.1023/A:1004263304657
Putra PA, Yuliando H (2015) Soilless culture system to support water use efficiency and product quality: a review. Agric Agric Sci Proc 3:283–288. https://doi.org/10.1016/j.aaspro.2015.01.054
Ranger CB (1981) Flow injection analysis: principles, techniques, applications, design. Anal Chem 53:20A-32A. https://doi.org/10.1021/ac00224a001
Richa A, Touil S, Fizir M, Martinez V (2020) Recent advances and perspectives in the treatment of hydroponic wastewater: a review. Rev Environ Sci Bio/Tech 1–22. https://doi.org/10.1007/s11157-020-09555-9
Richter H, McCarthy K, Nevin KP, Johnson JP, Rotello VM, Lovley DR (2008) Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir 24:4376–4379. https://doi.org/10.1021/la703469y
Rius-Ruiz FX, Andrade FJ, Riu J, Rius FX (2014) Computer-operated analytical platform for the determination of nutrients in hydroponic systems. Food Chem 147:92–97. https://doi.org/10.1016/j.foodchem.2013.09.114
Rowley S, Cardon G, Black B (2012) Macronutrient management for Utah Orchards. USU Extension Publication Horticulture/Fruit/2012–01pr
Ryan J, Estefan G, Rashid A (2001) Soil and plant analysis laboratory manual. ICARDA
Saaid M, Yahya N, Noor M, Ali MM (2013) A development of an automatic microcontroller system for Deep Water Culture (DWC). 2013 IEEE 9th international colloquium on signal processing and its applications. IEEE, New York, pp 328–332
Sajid M, Ullah I, Rab A, Shah ST, Basit A, Bibi F, Ahmad M (2020) 2. Foliar application of calcium improves growth, yield and quality of tomato cultivars. Pure Appl Bio (PAB) 9:10–19. https://doi.org/10.19045/bspab.2020.90002
Salas, M.d.C., Montero, J.L., Diaz, J.G., Berti, F., Quintero, M.F., Guzmán, M., Orsini, F., , 2020 Salas MdC, Montero JL, Diaz JG, Berti F, Quintero MF, Guzmán M, Orsini F (2020) Defining optimal strength of the nutrient solution for soilless cultivation of saffron in the Mediterranean. Agronomy 10, 1311https://doi.org/10.3390/agronomy10091311
Sambo P, Nicoletto C, Giro A, Pii Y, Valentinuzzi F, Mimmo T, Lugli P, Orzes G, Mazzetto F, Astolfi S (2019) Hydroponic solutions for soilless production systems: issues and opportunities in a smart agriculture perspective. Front Plant Sci 10:923. https://doi.org/10.3389/fpls.2019.00923
Sarooshi RA, Cresswell G (1994) Effects of hydroponic solution composition, electrical conductivity and plant spacing on yield and quality of strawberries. Aust J Exp Agric 34:529–535. https://doi.org/10.1071/EA9940529
Sharma S, Rana VS, Pawar R, Lakra J, Racchapannavar V (2020) Nanofertilizers for sustainable fruit production: a review. Environ Chem Lett 1–22https://doi.org/10.1007/s10311-020-01125-3
Signore A, Serio F, Santamaria P (2016) A targeted management of the nutrient solution in a soilless tomato crop according to plant needs. Front Plant Sci 7:391. https://doi.org/10.3389/fpls.2016.00391
Sihombing P, Karina N, Tarigan J, Syarif M (2018) Automated hydroponics nutrition plants systems using arduino uno microcontroller based on android. Journal of Physics: Conference Series. IOP Publishing, p 012014. https://doi.org/10.1088/1742-6596/978/1/012014
Solis-Toapanta E, Fisher P, Gómez C (2020) Growth rate and nutrient uptake of basil in small-scale hydroponics. HortScience 55:507–514. https://doi.org/10.21273/HORTSCI14727-19
Sonneveld C, Voogt W (2009) Nutrient solutions for soilless cultures. Plant nutrition of greenhouse crops. Springer, New York, pp 257–275
Sonneveld C, Voogt W (2009) Plant nutrition in future greenhouse production. Plant nutrition of greenhouse crops. Springer, New York, pp 393–403
Srivastava AK, Dev A, Karmakar S (2018) Nanosensors and nanobiosensors in food and agriculture. Environ Chem Lett 16:161–182. https://doi.org/10.1007/s10311-017-0674-7
Surantha N (2019) Intelligent monitoring and controlling system for hydroponics precision agriculture. 2019 7th international conference on information and communication technology (ICoICT). IEEE, New York, pp 1–6
Tan L, Wang N (2010) Future internet: The internet of things. 2010 3rd international conference on advanced computer theory and engineering (ICACTE). IEEE, pp V5–376-V375–380. Doi:https://doi.org/10.1109/ICACTE.2010.5579543
Tran T-T, Choi J-W, Le T-TH, Kim J-W (2019) A comparative study of deep CNN in forecasting and classifying the macronutrient deficiencies on development of tomato plant. Appl Sci 9:1601. https://doi.org/10.3390/app9081601
Trejo-Téllez LI, Gómez-Merino FC (2012) Nutrient solutions for hydroponic systems. Hydroponics-a standard methodology for plant biological researches, pp 1–22.
Tripathi DK, Singh VP, Chauhan DK, Prasad SM, Dubey NK (2014) Role of macronutrients in plant growth and acclimation: recent advances and future prospective. Improvement of crops in the era of climatic changes. Springer, New York, pp 197–216
Tyson R, Simonne E, Davis M, Lamb E, White J, Treadwell D (2007) Effect of nutrient solution, nitrate-nitrogen concentration, and pH on nitrification rate in perlite medium. J Plant Nutr 30:901–913. https://doi.org/10.1080/15226510701375101
Tzounis A, Katsoulas N, Bartzanas T, Kittas C (2017) Internet of Things in agriculture, recent advances and future challenges. Biosys Eng 164:31–48. https://doi.org/10.1016/j.biosystemseng.2017.09.007
Vardar G, Altıkatoğlu M, Ortaç D, Cemek M, Işıldak İ (2015) Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables. Biotechnol Appl Biochem 62:663–668. https://doi.org/10.1002/bab.1317
Verdouw C, Wolfert S, Tekinerdogan B (2016) Internet of Things in agriculture. CAB Rev: Perspect Agric Vet Sci Nutr Nat Resourc 11:1–12. https://doi.org/10.1079/PAVSNNR201611035
Vidhya R, Valarmathi K (2018) Survey on automatic monitoring of hydroponics farms using IoT. In: 2018 3rd international conference on communication and electronics systems (ICCES). IEEE, pp 125–128. Doi:https://doi.org/10.1109/CESYS.2018.8724103
Voogt W, Van Dijk P, Douven F, Van Der Maas R (2012) Development of a soilless growing system for blueberries (Vaccinium corymbosum): nutrient demand and nutrient solution. X Int Sympo Vaccin Superfruits 1017:215–221. https://doi.org/10.17660/ActaHortic.2014.1017.27
Wada T (2019) Theory and technology to control the nutrient solution of hydroponics. In: Plant factory using artificial light. Elsevier, pp 5–14. https://doi.org/10.1016/B978-0-12-813973-8.00001-4
Wen B, Li C, Fu X, Li D, Li L, Chen X, Wu H, Cui X, Zhang X, Shen H (2019) Effects of nitrate deficiency on nitrate assimilation and chlorophyll synthesis of detached apple leaves. Plant Physiol Biochem 142:363–371. https://doi.org/10.1016/j.plaphy.2019.07.007
Wortmann F, Flüchter K (2015) Internet of things. Bus Inf Syst Eng 57:221–224. https://doi.org/10.1007/s12599-015-0383-3
Xu K, Kitazumi Y, Kano K, Shirai O (2019) Construction of an automatic nutrient solution management system for hydroponics-adjustment of the K+-Concentration and volume of water. Analytical Sciences, 18A003. https://doi.org/10.2116/analsci.18A003
Xu K, Kitazumi Y, Kano K, Shirai O (2020) Automatic management of nutrient solution for hydroponics-construction of multi-ion stat. Analytical Sciences, 20A002. https://doi.org/10.2116/analsci.20A002
Xydis GA, Liaros S, Botsis K (2017) Energy demand analysis via small scale hydroponic systems in suburban areas–An integrated energy-food nexus solution. Sci Total Environ 593:610–617. https://doi.org/10.1016/j.scitotenv.2017.03.170
Yanes AR, Martinez P, Ahmad R (2020) Towards automated aquaponics: a review on monitoring, IoT, and smart systems. J Cleaner Product 121571https://doi.org/10.1016/j.jclepro.2020.121571
Yapson J, Atmadja W, Liawatimena S, Susanto R (2018) Hydroponic nutrient mixing system based on STM32. In: IOP Conference series: earth and environmental science. IOP Publishing, p 012052. Doi:https://doi.org/10.1088/1755-1315/195/1/012052
Yolanda D, Hindersah H, Hadiatna F, Triawan MA (2016) Implementation of real-time fuzzy logic control for NFT-based hydroponic system on Internet of Things environment. In: 2016 6th International conference on system engineering and technology (ICSET). IEEE, New York, pp 153–159. https://doi.org/10.1109/ICSEngT.2016.7849641
Zhang FC, Kang SZ, Li FS, Zhang JH (2007) Growth and major nutrient concentrations in Brassica campestris supplied with different NH4+/NO3− ratios. J Integr Plant Biol 49:455–462. https://doi.org/10.1111/j.1744-7909.2007.00373.x