Các kỹ thuật điện hóa tiên tiến để xác định điện xúc tác ở mức độ đơn phần tử

Hongmei Li1, Yong Guo1, Zhaoyu Jin2
1College of Chemistry, Sichuan University, Chengdu, P.R. China
2Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, P. R. China

Tóm tắt

Tóm tắtCác công nghệ điện xúc tác đóng một vai trò quan trọng trong việc phát triển năng lượng hydro và các nguồn năng lượng xanh tái tạo khác, với các hợp chất nanô thu hút sự chú ý đáng kể nhờ vào hoạt tính điện xúc tác phụ thuộc vào kích thước và ứng dụng rộng rãi của chúng. Điện hóa học đơn phần tử cung cấp một phương pháp mạnh mẽ để nghiên cứu hoạt tính xúc tác nội tại và cơ chế điện xúc tác của các hệ thống nanô riêng lẻ, từ đó tạo điều kiện cho việc hiểu rõ hơn về mối quan hệ cấu trúc-hoạt tính ở quy mô nanô. Trong bài tổng quan này, một số kỹ thuật đạt độ phân giải cao tiên tiến để kiểm tra tính phản ứng địa phương ở mức độ đơn phần tử được thảo luận, chẳng hạn như kính hiển vi điện hóa quét (SECM), kính hiển vi ô điện hóa quét (SECCM), kỹ thuật va chạm đơn phần tử, và điện hóa học đơn nguyên tử/phân tử. Chúng tôi bắt đầu bằng việc giải thích ngắn gọn các nguyên lý hoạt động của những phương pháp điện hóa học tiên tiến này. Tiếp theo, chúng tôi trình bày những phát triển gần đây trong các kỹ thuật điện hóa học có độ phân giải cao để xác định điện xúc tác chi tiết với những thông tin quý giá về hoạt tính địa phương của các xúc tác khác nhau. Trong các nghiên cứu tương lai, việc tích hợp nhiều công nghệ thông qua phân tích hợp tác được kỳ vọng sẽ tiết lộ thêm các vị trí hoạt động xúc tác của các điện xúc tác có cấu trúc phức tạp và tạo điều kiện cho các nghiên cứu định lượng về các quá trình phản ứng phức tạp.

Từ khóa


Tài liệu tham khảo

Mirkin MV, Sun T, Yu Y et al (2016) Electrochemistry at one nanoparticle. Accounts Chem Res 49:2328–2335

Bard AJ, Zhou H, Kwon SJ (2010) Electrochemistry of single nanoparticles via electrocatalytic amplification. Isr J Chem 50:267–276

Kim J, Dick JE, Bard AJ (2016) Advanced electrochemistry of individual metal clusters electrodeposited atom by atom to nanometer by nanometer. Accounts Chem Res 49:2587–2595

Wang W, Tao N (2014) Detection, counting, and imaging of single nanoparticles. Anal Chem 86:2–14

Yamamoto K, Imaoka T, Chun W-J et al (2009) Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat Chem 1:397–402

Nesselberger M, Roefzaad M, FayçalHamou R et al (2013) The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat Mater 12:919–924

Sánchez-Sánchez CM, Solla-Gullón J, Vidal-Iglesias FJ et al (2010) Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. J Am Chem Soc 132:5622–5624

Song Y, Ji K, Duan H et al (2021) Hydrogen production coupled with water and organic oxidation based on layered double hydroxides. Exploration 1:20210050

Lv C, Liu J, Lee C et al (2022) Emerging p-block-element-based electrocatalysts for sustainable nitrogen conversion. ACS Nano 16:15512–15527

Li P, Liao L, Fang Z et al (2023) A multifunctional copper single-atom electrocatalyst aerogel for smart sensing and producing ammonia from nitrate. Natl Acad Sci 120:e2305489120

Li P, Li R, Liu Y et al (2023) Pulsed nitrate-to-ammonia electroreduction facilitated by tandem catalysis of nitrite intermediates. J Am Chem Soc 145:6471–6479

Gao T, Tang X, Li X et al (2023) Understanding the atomic and defective interface effect on ruthenium clusters for the hydrogen evolution reaction. ACS Catal 13:49–59

Xie M, Zhang B, Jin Z et al (2022) Atomically reconstructed palladium metallene by intercalation-induced lattice expansion and amorphization for highly efficient electrocatalysis. ACS Nano 16:13715–13727

Qiu W, Xie M, Wang P et al (2023) Size-defined Ru nanoclusters supported by TiO2 nanotubes enable low-concentration nitrate electroreduction to ammonia with suppressed hydrogen evolution. Small 19(30):2300437

Li R, Gao T, Wang P et al (2023) The origin of selective nitrate-to-ammonia electroreduction on metal-free nitrogen-doped carbon aerogel catalysts. Appl Catal B 331:122677

Qiu W, Chen X, Liu Y et al (2022) Confining intermediates within a catalytic nanoreactor facilitates nitrate-to-ammonia electrosynthesis. Appl Catal B 315:121548

Bard AJ (2007) Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J Am Chem Soc 129:9610–9612

Pfisterer JHK, Liang Y, Schneider O et al (2017) Direct instrumental identification of catalytically active surface sites. Nature 549:74–77

Timoshenko J, RoldanCuenya B (2021) In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem Rev 121:882–961

Li J, Gong J (2020) Operando characterization techniques for electrocatalysis. Energy Environ Sci 13:3748–3779

Jin Z, Bard AJ (2021) Surface interrogation of electrodeposited MnOx and CaMnO3 perovskites by scanning electrochemical microscopy: probing active sites and kinetics for the oxygen evolution reaction. Angew Chem Int Ed 60:794–799

Jin Z, Li P, Fang Z et al (2022) Emerging electrochemical techniques for probing site behavior in single-atom electrocatalysts. Accounts Chem Res 55:759–769

Yu Y, Sun T, Mirkin MV (2015) Scanning electrochemical microscopy of single spherical nanoparticles: theory and particle size evaluation. Anal Chem 87:7446–7453

Kim J, Renault C, Nioradze N et al (2017) Electrocatalytic activity of individual Pt nanoparticles studied by nanoscale scanning electrochemical microscopy. J Am Chem Soc 138:8560–8568

Choi M, Siepser NP, Jeong S et al (2020) Probing single-particle electrocatalytic activity at facet-controlled gold nanocrystals. Nano Lett 20:1233–1239

Lai SCS, Dudin PV, Macpherson JV et al (2011) Visualizing zeptomole (electro) catalysis at single nanoparticles within an ensemble. J Am Chem Soc 133:10744–10747

Bhat MA, Nioradze N, Kim J et al (2017) In situ detection of the adsorbed Fe(II) intermediate and the mechanism of magnetite electrodeposition by scanning electrochemical microscopy. J Am Chem Soc 139:15891–15899

Li P, Jin Z, Qian Y et al (2020) Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Mater Today 35:78–86

Li P, Jin Z, Fang Z et al (2021) A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ Sci 14:3522–3531

Jin Z (2023) High-spatiotemporal-resolution electrochemical measurements of electrocatalytic reactivity. Anal Chem 95:6477–6489

Huang J, Zhang J, Eikerling MH (2017) Particle proximity effect in nanoparticle electrocatalysis: surface charging and electrostatic interactions. J Phys Chem C 121:4806–4815

Gara M, Ward KR, Compton RG (2013) Nanomaterial modified electrodes: evaluating oxygen reduction catalysts. Nanoscale 5:7304–7311

Bertoncello P (2010) Advances on scanning electrochemical microscopy (SECM) for energy. Energy Environ Sci 3:1620–1633

Sun T, Yu Y, Zacher BJ et al (2014) Scanning electrochemical microscopy of individual catalytic nanoparticles. Angew Chem Int Ed 53:14120–14123

Jin Z, Bard AJ (2020) Atom-by-atom electrodeposition of single isolated cobalt oxide molecules and clusters for studying the oxygen evolution reaction. Proc Natl Acad Sci 117:12651–12656

Ma W, Hu K, Chen Q et al (2017) Electrochemical size measurement and characterization of electrodeposited platinum nanoparticles at nanometer resolution with scanning electrochemical microscopy. Nano Lett 17:4354–4358

Li P, Jin Z, Qian Y et al (2019) Probing enhanced site activity of Co-Fe bimetallic subnanoclusters derived from dual cross-linked hydrogels for oxygen electrocatalysis. ACS Energy Lett 4:1793–1802

Li P, Jin Z, Fang Z et al (2020) A surface-strained and geometry-tailored nanoreactor that promotes ammonia electrosynthesis. Angew Chem Int Ed 59:22610–22616

Jin Z, Li P, Meng Y et al (2021) Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat Catal 4:615–622

Bentley CL, Kang M, Unwin PR (2019) Nanoscale surface structure–activity in electrochemistry and electrocatalysis. J Am Chem Soc 141:2179–2193

Wang Y, Skaanvik SA, Xiong X et al (2021) Scanning probe microscopy for electrocatalysis. Matter 4:3483–3514

Santana Santos C, Jaato BN, Sanjuán I et al (2023) Operando scanning electrochemical probe microscopy during electrocatalysis. Chem Rev 123:4972–5019

Hafez ME, Ma H, Ma W et al (2019) Unveiling the intrinsic catalytic activities of single-gold-nanoparticle-based enzyme mimetics. Angew Chem Int Ed 58:6327–6332

Wan K, Chu T, Li B et al (2023) Rational design of atomically dispersed metal site electrocatalysts for oxygen reduction reaction. Adv Sci (Weinh) 10:e2203391

Liang Y, Pfisterer JHK, McLaughlin D et al (2019) Electrochemical scanning probe microscopies in electrocatalysis. Small Methods 3:1800387

Kai T, Zoski CG, Bard AJ (2018) Scanning electrochemical microscopy at the nanometer level. ChemComm 54:1934–1947

Bae JH, Brocenschi RF, Kisslinger K et al (2017) Dissolution of Pt during oxygen reduction reaction produces Pt nanoparticles. Anal Chem 89:12618–12621

Schorr NB, Counihan MJ, Bhargava R et al (2020) Impact of plasmonic photothermal effects on the reactivity of Au nanoparticle modified graphene electrodes visualized using scanning electrochemical microscopy. Anal Chem 92:3666–3673

Conzuelo F, Sliozberg K, Gutkowski R et al (2017) High-resolution analysis of photoanodes for water splitting by means of scanning photoelectrochemical microscopy. Anal Chem 89:1222–1228

Sun T, Wang D, Mirkin MV et al (2019) Direct high-resolution mapping of electrocatalytic activity of semi-two-dimensional catalysts with single-edge sensitivity. Proc Natl Acad Sci 116:11618–11623

Bo T, Wang X, Jia R et al (2021) Probing activities of individual catalytic nanoflakes by tunneling mode of scanning electrochemical microscopy. J Phys Chem C 125:25525–25532

Sarkar S, Wang X, Hesari M et al (2021) Scanning electrochemical and photoelectrochemical microscopy on finder grids: toward correlative multitechnique imaging of surfaces. Anal Chem 93:5377–5382

Pham-Truong TN, Deng B, Liu Z et al (2018) Local electrochemical reactivity of single layer graphene deposited on flexible and transparent plastic film using scanning electrochemical microscopy. Carbon 130:566–573

Berg KE, Leroux YR, Hapiot P et al (2021) SECM investigation of carbon composite thermoplastic electrodes. Anal Chem 93:1304–1309

Sun T, Wang D, Mirkin MV (2018) Tunneling mode of scanningelectrochemical microscopy: probing electrochemical processes at single nanoparticles. Angew Chem Int Ed 57:7463–7467

Blanchard PY, Sun T, Yu Y et al (2016) Scanning electrochemical microscopy study of permeability of a thiolated aryl multilayer and imaging of single nanocubes anchored to it. Langmuir 32:2500–2508

Sun T, Wang D, Mirkin MV (2018) Electrochemistry at a single nanoparticle: from bipolar regime to tunnelling. Faraday Discuss 210:173–188

Ebejer N, Schnippering M, Colburn AW et al (2010) Localized high resolution electrochemistry and multifunctional imaging: scanning electrochemical cell microscopy. Anal Chem 82:9141–9145

Ebejer N, Güell AG, Lai SCS et al (2013) Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annu Rev Anal Chem 6:329–351

Kleijn SEF, Lai SCS, Miller TS et al (2012) Landing and catalytic characterization of individual nanoparticles on electrode surfaces. J Am Chem Soc 134:18558–18561

Bentley CL, Kang M, Unwin PR (2017) Nanoscale structure dynamics within electrocatalytic materials. J Am Chem Soc 139(46):16813–16821

Mefford JT, Akbashev AR, Kang M et al (2021) Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 593:67–73

Mariano RG, McKelvey K, White HS et al (2017) Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358:1187–1192

Li M, Ye KH, Qiu W et al (2022) Heterogeneity between and within single hematite nanorods as electrocatalysts for oxygen evolution reaction. J Am Chem Soc 144:5247–5252

Tarnev T, Aiyappa HB, Botz A et al (2019) Scanning electrochemical cell microscopy investigation of single ZIF-derived nanocomposite particles as electrocatalysts for oxygen evolution in alkaline media. Angew Chem Int Ed 58:14265–14269

Quast T, Varhade S, Saddeler S et al (2021) Single particle nanoelectrochemistry reveals the catalytic oxygen evolution reaction activity of Co3O4 nanocubes. Angew Chem Int Ed 60:23444–23450

Lu X, Li M, Peng Y et al (2021) Direct probing of the oxygen evolution reaction at single NiFe2O4 nanocrystal superparticles with tunable structures. J Am Chem Soc 143:16925–16929

Ustarroz J, Ornelas IM, Zhang G et al (2018) Mobility and poisoning of mass-selected platinum nanoclusters during the oxygen reduction reaction. ACS Catal 8:6775–6790

Wang Y, Gordon E, Ren H (2020) Mapping the potential of zero charge and electrocatalytic activity of metal-electrolyte interface via a grain-by-grain approach. Anal Chem 92:2859–2865

Jeong S, Choi MH, Jagdale GS et al (2022) Unraveling the structural sensitivity of CO2 electroreduction at facet-defined nanocrystals via correlative single-entity and macroelectrode measurements. J Am Chem Soc 144:12673–12680

Zhao J, Wang M, Peng Y et al (2023) Exploring the strain effect in single particle electrochemistry using Pd nanocrystals. Angew Chem Int Ed 62(30):e202304424

Xiao X, Fan FRF, Zhou J et al (2008) Current transients in single nanoparticle collision events. J Am Chem Soc 130:16669–16677

Clausmeyer J, Botz A, Ohl D et al (2016) The oxygen reduction reaction at the three-phase boundary: nanoelectrodes modified with Ag nanoclusters. Faraday Discuss 193:241–250

Ying Y, Ding Z, Zhan D et al (2017) Advanced electroanalytical chemistry at nanoelectrodes. Chem Sci 8:3338–3348

Peng Y, Qian R, Hafez ME et al (2017) Stochastic collision nanoelectrochemistry: a review of recent developments. ChemElectroChem 4:977–985

Peng Y, Guo D, Ma W et al (2018) Intrinsic electrocatalytic activity of gold nanoparticles measured by single entity electrochemistry. ChemElectroChem 5:2982–2985

Li H, Zhang X, Sun Z et al (2022) Rapid screening of bimetallic electrocatalysts using single nanoparticle collision electrochemistry. J Am Chem Soc 144:16480–16489

Chen M, Lu S, Peng Y et al (2021) Tracking the electrocatalytic activity of a single palladium nanoparticle for the hydrogen evolution reaction. Chemistry 27:11799–11803

Li Y, Cox JT, Zhang B (2010) Electrochemical responses and electrocatalysis at single Au nanoparticles. J Am Chem Soc 132:3047–3054

Zhou M, Wang D, Mirkin MV (2018) Electrochemical evaluation of the number of Au atoms in polymeric gold thiolates by single particle collisions. Anal Chem 90:8285–8289

Zhao L, Qian R, Ma W et al (2016) Electrocatalytic efficiency analysis of catechol molecules for NADH oxidation during nanoparticle collision. Anal Chem 88:8375–8379

Gao R, Ying Y, Li Y et al (2018) A 30 nm nanopore electrode: facile fabrication and direct insights into the intrinsic feature of single nanoparticle collisions. Angew Chem Int Ed 57:1011–1015

Liu W, Yang Z, Yang C et al (2022) Profiling single-molecule reaction kinetics under nanopore confinement. Chem Sci 13:4109–4114

Ma H, Chen J, Wang H et al (2020) Exploring dynamic interactions of single nanoparticles at interfaces for surface-confined electrochemical behavior and size measurement. Nat Commun 11:2307

Peng Y, Ma H, Ma W et al (2018) Single-nanoparticle photoelectrochemistry at a nanoparticulate TiO(2)-filmed ultramicroelectrode. Angew Chem Int Ed 57:3758–3762

Zhou M, Dick JE, Bard AJ (2017) Electrodeposition of isolated platinum atoms and clusters on bismuth-characterization and electrocatalysis. J Am Chem Soc 139:17677–17682

Zhou M, Bao S, Bard AJ (2019) Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles. J Am Chem Soc 141:7327–7332

Wang W (2018) Imaging the chemical activity of single nanoparticles with optical microscopy. Chem Soc Rev 47:2485–2508

Brasiliense V, Clausmeyer J, Dauphin AL et al (2017) Opto-electrochemical in situ monitoring of the cathodic formation of single cobalt nanoparticles. Angew Chem Int Ed 56:10598–10601

Hendriks FC, Mohammadian S, Ristanović Z et al (2018) Integrated transmission electron and single-molecule fluorescence microscopy correlates reactivity with ultrastructure in a single catalyst particle. Angew Chem Int Ed 57:257–261