Các kỹ thuật điện hóa tiên tiến để xác định điện xúc tác ở mức độ đơn phần tử
Tóm tắt
Từ khóa
Tài liệu tham khảo
Mirkin MV, Sun T, Yu Y et al (2016) Electrochemistry at one nanoparticle. Accounts Chem Res 49:2328–2335
Bard AJ, Zhou H, Kwon SJ (2010) Electrochemistry of single nanoparticles via electrocatalytic amplification. Isr J Chem 50:267–276
Kim J, Dick JE, Bard AJ (2016) Advanced electrochemistry of individual metal clusters electrodeposited atom by atom to nanometer by nanometer. Accounts Chem Res 49:2587–2595
Yamamoto K, Imaoka T, Chun W-J et al (2009) Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat Chem 1:397–402
Nesselberger M, Roefzaad M, FayçalHamou R et al (2013) The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat Mater 12:919–924
Sánchez-Sánchez CM, Solla-Gullón J, Vidal-Iglesias FJ et al (2010) Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. J Am Chem Soc 132:5622–5624
Song Y, Ji K, Duan H et al (2021) Hydrogen production coupled with water and organic oxidation based on layered double hydroxides. Exploration 1:20210050
Lv C, Liu J, Lee C et al (2022) Emerging p-block-element-based electrocatalysts for sustainable nitrogen conversion. ACS Nano 16:15512–15527
Li P, Liao L, Fang Z et al (2023) A multifunctional copper single-atom electrocatalyst aerogel for smart sensing and producing ammonia from nitrate. Natl Acad Sci 120:e2305489120
Li P, Li R, Liu Y et al (2023) Pulsed nitrate-to-ammonia electroreduction facilitated by tandem catalysis of nitrite intermediates. J Am Chem Soc 145:6471–6479
Gao T, Tang X, Li X et al (2023) Understanding the atomic and defective interface effect on ruthenium clusters for the hydrogen evolution reaction. ACS Catal 13:49–59
Xie M, Zhang B, Jin Z et al (2022) Atomically reconstructed palladium metallene by intercalation-induced lattice expansion and amorphization for highly efficient electrocatalysis. ACS Nano 16:13715–13727
Qiu W, Xie M, Wang P et al (2023) Size-defined Ru nanoclusters supported by TiO2 nanotubes enable low-concentration nitrate electroreduction to ammonia with suppressed hydrogen evolution. Small 19(30):2300437
Li R, Gao T, Wang P et al (2023) The origin of selective nitrate-to-ammonia electroreduction on metal-free nitrogen-doped carbon aerogel catalysts. Appl Catal B 331:122677
Qiu W, Chen X, Liu Y et al (2022) Confining intermediates within a catalytic nanoreactor facilitates nitrate-to-ammonia electrosynthesis. Appl Catal B 315:121548
Bard AJ (2007) Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J Am Chem Soc 129:9610–9612
Pfisterer JHK, Liang Y, Schneider O et al (2017) Direct instrumental identification of catalytically active surface sites. Nature 549:74–77
Timoshenko J, RoldanCuenya B (2021) In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem Rev 121:882–961
Li J, Gong J (2020) Operando characterization techniques for electrocatalysis. Energy Environ Sci 13:3748–3779
Jin Z, Bard AJ (2021) Surface interrogation of electrodeposited MnOx and CaMnO3 perovskites by scanning electrochemical microscopy: probing active sites and kinetics for the oxygen evolution reaction. Angew Chem Int Ed 60:794–799
Jin Z, Li P, Fang Z et al (2022) Emerging electrochemical techniques for probing site behavior in single-atom electrocatalysts. Accounts Chem Res 55:759–769
Yu Y, Sun T, Mirkin MV (2015) Scanning electrochemical microscopy of single spherical nanoparticles: theory and particle size evaluation. Anal Chem 87:7446–7453
Kim J, Renault C, Nioradze N et al (2017) Electrocatalytic activity of individual Pt nanoparticles studied by nanoscale scanning electrochemical microscopy. J Am Chem Soc 138:8560–8568
Choi M, Siepser NP, Jeong S et al (2020) Probing single-particle electrocatalytic activity at facet-controlled gold nanocrystals. Nano Lett 20:1233–1239
Lai SCS, Dudin PV, Macpherson JV et al (2011) Visualizing zeptomole (electro) catalysis at single nanoparticles within an ensemble. J Am Chem Soc 133:10744–10747
Bhat MA, Nioradze N, Kim J et al (2017) In situ detection of the adsorbed Fe(II) intermediate and the mechanism of magnetite electrodeposition by scanning electrochemical microscopy. J Am Chem Soc 139:15891–15899
Li P, Jin Z, Qian Y et al (2020) Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Mater Today 35:78–86
Li P, Jin Z, Fang Z et al (2021) A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ Sci 14:3522–3531
Jin Z (2023) High-spatiotemporal-resolution electrochemical measurements of electrocatalytic reactivity. Anal Chem 95:6477–6489
Huang J, Zhang J, Eikerling MH (2017) Particle proximity effect in nanoparticle electrocatalysis: surface charging and electrostatic interactions. J Phys Chem C 121:4806–4815
Gara M, Ward KR, Compton RG (2013) Nanomaterial modified electrodes: evaluating oxygen reduction catalysts. Nanoscale 5:7304–7311
Bertoncello P (2010) Advances on scanning electrochemical microscopy (SECM) for energy. Energy Environ Sci 3:1620–1633
Sun T, Yu Y, Zacher BJ et al (2014) Scanning electrochemical microscopy of individual catalytic nanoparticles. Angew Chem Int Ed 53:14120–14123
Jin Z, Bard AJ (2020) Atom-by-atom electrodeposition of single isolated cobalt oxide molecules and clusters for studying the oxygen evolution reaction. Proc Natl Acad Sci 117:12651–12656
Ma W, Hu K, Chen Q et al (2017) Electrochemical size measurement and characterization of electrodeposited platinum nanoparticles at nanometer resolution with scanning electrochemical microscopy. Nano Lett 17:4354–4358
Li P, Jin Z, Qian Y et al (2019) Probing enhanced site activity of Co-Fe bimetallic subnanoclusters derived from dual cross-linked hydrogels for oxygen electrocatalysis. ACS Energy Lett 4:1793–1802
Li P, Jin Z, Fang Z et al (2020) A surface-strained and geometry-tailored nanoreactor that promotes ammonia electrosynthesis. Angew Chem Int Ed 59:22610–22616
Jin Z, Li P, Meng Y et al (2021) Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat Catal 4:615–622
Bentley CL, Kang M, Unwin PR (2019) Nanoscale surface structure–activity in electrochemistry and electrocatalysis. J Am Chem Soc 141:2179–2193
Wang Y, Skaanvik SA, Xiong X et al (2021) Scanning probe microscopy for electrocatalysis. Matter 4:3483–3514
Santana Santos C, Jaato BN, Sanjuán I et al (2023) Operando scanning electrochemical probe microscopy during electrocatalysis. Chem Rev 123:4972–5019
Hafez ME, Ma H, Ma W et al (2019) Unveiling the intrinsic catalytic activities of single-gold-nanoparticle-based enzyme mimetics. Angew Chem Int Ed 58:6327–6332
Wan K, Chu T, Li B et al (2023) Rational design of atomically dispersed metal site electrocatalysts for oxygen reduction reaction. Adv Sci (Weinh) 10:e2203391
Liang Y, Pfisterer JHK, McLaughlin D et al (2019) Electrochemical scanning probe microscopies in electrocatalysis. Small Methods 3:1800387
Kai T, Zoski CG, Bard AJ (2018) Scanning electrochemical microscopy at the nanometer level. ChemComm 54:1934–1947
Bae JH, Brocenschi RF, Kisslinger K et al (2017) Dissolution of Pt during oxygen reduction reaction produces Pt nanoparticles. Anal Chem 89:12618–12621
Schorr NB, Counihan MJ, Bhargava R et al (2020) Impact of plasmonic photothermal effects on the reactivity of Au nanoparticle modified graphene electrodes visualized using scanning electrochemical microscopy. Anal Chem 92:3666–3673
Conzuelo F, Sliozberg K, Gutkowski R et al (2017) High-resolution analysis of photoanodes for water splitting by means of scanning photoelectrochemical microscopy. Anal Chem 89:1222–1228
Sun T, Wang D, Mirkin MV et al (2019) Direct high-resolution mapping of electrocatalytic activity of semi-two-dimensional catalysts with single-edge sensitivity. Proc Natl Acad Sci 116:11618–11623
Bo T, Wang X, Jia R et al (2021) Probing activities of individual catalytic nanoflakes by tunneling mode of scanning electrochemical microscopy. J Phys Chem C 125:25525–25532
Sarkar S, Wang X, Hesari M et al (2021) Scanning electrochemical and photoelectrochemical microscopy on finder grids: toward correlative multitechnique imaging of surfaces. Anal Chem 93:5377–5382
Pham-Truong TN, Deng B, Liu Z et al (2018) Local electrochemical reactivity of single layer graphene deposited on flexible and transparent plastic film using scanning electrochemical microscopy. Carbon 130:566–573
Berg KE, Leroux YR, Hapiot P et al (2021) SECM investigation of carbon composite thermoplastic electrodes. Anal Chem 93:1304–1309
Sun T, Wang D, Mirkin MV (2018) Tunneling mode of scanningelectrochemical microscopy: probing electrochemical processes at single nanoparticles. Angew Chem Int Ed 57:7463–7467
Blanchard PY, Sun T, Yu Y et al (2016) Scanning electrochemical microscopy study of permeability of a thiolated aryl multilayer and imaging of single nanocubes anchored to it. Langmuir 32:2500–2508
Sun T, Wang D, Mirkin MV (2018) Electrochemistry at a single nanoparticle: from bipolar regime to tunnelling. Faraday Discuss 210:173–188
Ebejer N, Schnippering M, Colburn AW et al (2010) Localized high resolution electrochemistry and multifunctional imaging: scanning electrochemical cell microscopy. Anal Chem 82:9141–9145
Ebejer N, Güell AG, Lai SCS et al (2013) Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annu Rev Anal Chem 6:329–351
Kleijn SEF, Lai SCS, Miller TS et al (2012) Landing and catalytic characterization of individual nanoparticles on electrode surfaces. J Am Chem Soc 134:18558–18561
Bentley CL, Kang M, Unwin PR (2017) Nanoscale structure dynamics within electrocatalytic materials. J Am Chem Soc 139(46):16813–16821
Mefford JT, Akbashev AR, Kang M et al (2021) Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 593:67–73
Mariano RG, McKelvey K, White HS et al (2017) Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358:1187–1192
Li M, Ye KH, Qiu W et al (2022) Heterogeneity between and within single hematite nanorods as electrocatalysts for oxygen evolution reaction. J Am Chem Soc 144:5247–5252
Tarnev T, Aiyappa HB, Botz A et al (2019) Scanning electrochemical cell microscopy investigation of single ZIF-derived nanocomposite particles as electrocatalysts for oxygen evolution in alkaline media. Angew Chem Int Ed 58:14265–14269
Quast T, Varhade S, Saddeler S et al (2021) Single particle nanoelectrochemistry reveals the catalytic oxygen evolution reaction activity of Co3O4 nanocubes. Angew Chem Int Ed 60:23444–23450
Lu X, Li M, Peng Y et al (2021) Direct probing of the oxygen evolution reaction at single NiFe2O4 nanocrystal superparticles with tunable structures. J Am Chem Soc 143:16925–16929
Ustarroz J, Ornelas IM, Zhang G et al (2018) Mobility and poisoning of mass-selected platinum nanoclusters during the oxygen reduction reaction. ACS Catal 8:6775–6790
Wang Y, Gordon E, Ren H (2020) Mapping the potential of zero charge and electrocatalytic activity of metal-electrolyte interface via a grain-by-grain approach. Anal Chem 92:2859–2865
Jeong S, Choi MH, Jagdale GS et al (2022) Unraveling the structural sensitivity of CO2 electroreduction at facet-defined nanocrystals via correlative single-entity and macroelectrode measurements. J Am Chem Soc 144:12673–12680
Zhao J, Wang M, Peng Y et al (2023) Exploring the strain effect in single particle electrochemistry using Pd nanocrystals. Angew Chem Int Ed 62(30):e202304424
Xiao X, Fan FRF, Zhou J et al (2008) Current transients in single nanoparticle collision events. J Am Chem Soc 130:16669–16677
Clausmeyer J, Botz A, Ohl D et al (2016) The oxygen reduction reaction at the three-phase boundary: nanoelectrodes modified with Ag nanoclusters. Faraday Discuss 193:241–250
Ying Y, Ding Z, Zhan D et al (2017) Advanced electroanalytical chemistry at nanoelectrodes. Chem Sci 8:3338–3348
Peng Y, Qian R, Hafez ME et al (2017) Stochastic collision nanoelectrochemistry: a review of recent developments. ChemElectroChem 4:977–985
Peng Y, Guo D, Ma W et al (2018) Intrinsic electrocatalytic activity of gold nanoparticles measured by single entity electrochemistry. ChemElectroChem 5:2982–2985
Li H, Zhang X, Sun Z et al (2022) Rapid screening of bimetallic electrocatalysts using single nanoparticle collision electrochemistry. J Am Chem Soc 144:16480–16489
Chen M, Lu S, Peng Y et al (2021) Tracking the electrocatalytic activity of a single palladium nanoparticle for the hydrogen evolution reaction. Chemistry 27:11799–11803
Li Y, Cox JT, Zhang B (2010) Electrochemical responses and electrocatalysis at single Au nanoparticles. J Am Chem Soc 132:3047–3054
Zhou M, Wang D, Mirkin MV (2018) Electrochemical evaluation of the number of Au atoms in polymeric gold thiolates by single particle collisions. Anal Chem 90:8285–8289
Zhao L, Qian R, Ma W et al (2016) Electrocatalytic efficiency analysis of catechol molecules for NADH oxidation during nanoparticle collision. Anal Chem 88:8375–8379
Gao R, Ying Y, Li Y et al (2018) A 30 nm nanopore electrode: facile fabrication and direct insights into the intrinsic feature of single nanoparticle collisions. Angew Chem Int Ed 57:1011–1015
Liu W, Yang Z, Yang C et al (2022) Profiling single-molecule reaction kinetics under nanopore confinement. Chem Sci 13:4109–4114
Ma H, Chen J, Wang H et al (2020) Exploring dynamic interactions of single nanoparticles at interfaces for surface-confined electrochemical behavior and size measurement. Nat Commun 11:2307
Peng Y, Ma H, Ma W et al (2018) Single-nanoparticle photoelectrochemistry at a nanoparticulate TiO(2)-filmed ultramicroelectrode. Angew Chem Int Ed 57:3758–3762
Zhou M, Dick JE, Bard AJ (2017) Electrodeposition of isolated platinum atoms and clusters on bismuth-characterization and electrocatalysis. J Am Chem Soc 139:17677–17682
Zhou M, Bao S, Bard AJ (2019) Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles. J Am Chem Soc 141:7327–7332
Wang W (2018) Imaging the chemical activity of single nanoparticles with optical microscopy. Chem Soc Rev 47:2485–2508
Brasiliense V, Clausmeyer J, Dauphin AL et al (2017) Opto-electrochemical in situ monitoring of the cathodic formation of single cobalt nanoparticles. Angew Chem Int Ed 56:10598–10601