Advanced comminution modelling: Part 1 – Crushers

Applied Mathematical Modelling - Tập 88 - Trang 238-265 - 2020
Paul W. Cleary1, Gary W. Delaney1, Matt D. Sinnott1, Sharen J. Cummins1, Rob D. Morrison1
1CSIRO Data61, Private Bag 10, Clayton South 3168, Australia

Tài liệu tham khảo

Harrison, 2018, Base metal fundamentals: an overview of 2018-2019 La Nauze, 2002, Technologies for sustainable operations Musa, 2009, A more sustainable approach to assessing comminution efficiency, Miner. Eng., 22, 593, 10.1016/j.mineng.2009.04.004 Ballantyne, 2014, Benchmarking comminution energy consumption for processing copper and gold ores, Miner. Eng., 65, 109, 10.1016/j.mineng.2014.05.017 J.A., Curry, M.J.L., Ismay, and G.J., Jameson, Mine operating costs and the potential impacts of energy and grinding, 56, (2014), 70–80. 2007 Napier-Munn, 2015, Is progress in energy-efficient comminution doomed?, Miner. Eng., 73, 1, 10.1016/j.mineng.2014.06.009 Rankin, 2013 Mudd, 2013, The ever growing case for paste and thickened tailings – towards more sustainable mine waste management, Aus. IMM Bull., 56 Bearman, 2013, Step change in the context of comminution, Miner. Eng., 43/44, 2, 10.1016/j.mineng.2012.06.010 Napier-Munn, 1996, Mineral comminution circuits: their operation and optimisation, JKMRC Hukki, 1961, Proposal for a solomonic settlement between the theories of von Rittinger, Kick and Bond, Trans. SME/AIME, 220, 403 Shi, 2009, Comparison of energy efficiency between ball mills and stirred mills in coarse grinding, Miner. Eng., 22, 673, 10.1016/j.mineng.2008.12.002 Valero, 2009, Exergy – a useful indicator for the sustainability of mineral resources and mining Woodcock, 1980 Gould, 1976, Pinto valley concentrator grinding with large diameter ball mills, SME transactions, 260, AIME, 260, 264 Mazzinghy, 2015 Woodcock, 1980, Mining and metallurgical practices in Australasia Woodcock, 1993 Rankin, 2013 Beke, 1964 Lynch, 2005 Cleary, 2016, Comminution mechanisms, particle shape evolution and collision energy partitioning in tumbling mills, Miner. Eng., 86, 75, 10.1016/j.mineng.2015.12.006 Cleary, 2018, Incremental damage and particle size reduction in a pilot SAG mill: DEM breakage method extension and validation, Miner. Eng., 128, 56, 10.1016/j.mineng.2018.08.021 Rankin, 2011 McIvor, 1997, High pressure grinding rolls – a review F., Pena, Recent developments and application of the tower mill. SME pre-print 86-380, (1986). Mazzinghy, 2017, Vertical stirred mill scale-up and simulation: model validation by industrial samplings results, Miner. Eng., 103–104, 127, 10.1016/j.mineng.2016.11.018 Bbosa, 2011, Power draw estimations in experimental tumbling mills using PEPT, Miner. Eng., 24, 319, 10.1016/j.mineng.2010.10.005 Govender, 2011, Measurement of shear rates in a laboratory tumbling mill, Miner. Eng., 24, 225, 10.1016/j.mineng.2010.08.009 Cundall, 1979, A discrete numerical model for granular assemblies, Geotechnique, 29, 47, 10.1680/geot.1979.29.1.47 Mishra, 1992, The discrete element method for the simulation of ball mills, App. Math. Modell., 16, 598, 10.1016/0307-904X(92)90035-2 Mishra, 1994, Simulation of charge motion in ball mills. Part 1: experimental verifications, Int. J. Min. Process., 40, 171, 10.1016/0301-7516(94)90042-6 Rajamani, 1996, Dynamics of ball and rock charge in SAG mills Cleary, 1998, Predicting charge motion, power draw, segregation, wear and particle breakage in ball mills using discrete element methods, Miner. Eng., 11, 1061, 10.1016/S0892-6875(98)00093-4 Cleary, 2001, Charge behaviour and power consumption in ball mills: sensitivity to mill operating conditions, liner geometry and charge composition, Int. J. Miner. Process., 63, 79, 10.1016/S0301-7516(01)00037-0 Cleary, 2001, Recent advances in DEM modelling of tumbling mills’, Miner. Eng., 14, 1295, 10.1016/S0892-6875(01)00145-5 Cleary, 2001, Modelling comminution devices using DEM, Int. J. Numer. Anal. Meth. Geomechan., 25, 83, 10.1002/1096-9853(200101)25:1<83::AID-NAG120>3.0.CO;2-K Herbst, 2001, Optimization of the design of sag mill internals using high fidelity simulation, IV, 150 P.W., Cleary, Large scale industrial DEM modelling, Engineering Computations, 21, (2004), 169–204. Cleary, 2009, Industrial particle flow modelling using DEM, Eng. Comput., 26, 698, 10.1108/02644400910975487 Morrison, 2008, Towards a virtual comminution machine, Miner. Eng., 21, 770, 10.1016/j.mineng.2008.06.005 Hlungwani, 2003, Further validation of DEM modelling of milling effects of liner profile and mill speed, Miner. Eng., 16, 993, 10.1016/j.mineng.2003.07.003 Kalala, 2005, Discrete element method (DEM) modelling of evolving mill liner profiles due to wear. Part I. DEM validation, Miner. Eng., 18, 1386, 10.1016/j.mineng.2005.02.009 Kalala, 2005, Discrete element method (DEM) modelling of evolving mill liner profiles due to wear. Part II. Industrial case study, Miner. Eng., 18, 1392, 10.1016/j.mineng.2005.02.010 Djordevic, 2003, Discrete element modelling of the influence of lifters on power draw of tumbling mills, Miner. Eng., 16, 331, 10.1016/S0892-6875(03)00019-0 Djordjevic, 2006, Modelling comminution patterns within a pilot scale AG/SAG Mill, Miner. Eng., 19, 1505, 10.1016/j.mineng.2006.07.003 Powell, 2006, The selection and design of mill liners, 331 Powell, 2011, DEM modelling of liner evolution and its influence on grinding rate in ball mills, Miner. Eng., 24, 341, 10.1016/j.mineng.2010.12.012 de Carvalho, 2013, Predicting the effect of operating and design variables on breakage rates using the mechanistic ball mill model, Miner. Eng., 43-44, 91, 10.1016/j.mineng.2012.09.008 Weerasekara, 2013, The contribution of DEM to the science of comminution, Powder Technol., 248, 3, 10.1016/j.powtec.2013.05.032 Tavares, 2017, A review of advanced ball mill modelling, KONA Powder Part. J., 34, 106, 10.14356/kona.2017015 Herbst, 2004, Making a discrete grain breakage model practical for comminution equipment performance simulation, Powder Technol., 143-144, 144, 10.1016/j.powtec.2004.04.036 Quist, 2016, Cone crusher modelling and simulation using DEM, Miner. Eng., 85, 92, 10.1016/j.mineng.2015.11.004 Legendre, 2014, Assessing the energy efficiency of a jaw crusher, Energy, 74, 119, 10.1016/j.energy.2014.04.036 Refahi, 2010, Discrete element modeling for predicting breakage behavior and fracture energy of a single particle in a jaw crusher, Int. J. Miner. Process., 94, 83, 10.1016/j.minpro.2009.12.002 Djordjevic, 2003, Applying discrete element modelling to vertical and horizontal shaft impact crushers, Miner. Eng., 16, 983, 10.1016/j.mineng.2003.08.007 Potapov, 1996, A three-dimensional simulation of brittle solid fracture, Int. J. Modern Phys. C, 7, 717, 10.1142/S0129183196000594 Lichter, 2009, New developments in cone crusher performance optimization, Miner. Eng., 22, 613, 10.1016/j.mineng.2009.04.003 da Cunha, 2013, Simulation of solids flow and energy transfer in a vertical shaft impact crusher using DEM, Miner. Eng., 43–44, 85, 10.1016/j.mineng.2012.09.003 Li, 2014, Discrete element modelling of a rock cone crusher, Powder Technol., 263, 151, 10.1016/j.powtec.2014.05.004 Cleary, 2015, Simulation of particle flows and breakage in crushers using DEM: Part 1 - Compression crushers, Miner. Eng., 74, 178, 10.1016/j.mineng.2014.10.021 Sinnott, 2015, Simulation of particle flows and breakage in crushers using DEM: Part 2 - Impact crushers, Miner. Eng., 74, 163, 10.1016/j.mineng.2014.11.017 Delaney, 2010, Novel application of DEM to modelling comminution processes, 10 Delaney, 2010, The packing properties of superellipsoids, Europhys. Lett., 89, 34002, 10.1209/0295-5075/89/34002 Delaney, 2015, DEM modelling of non-spherical particle breakage and flow in an industrial scale cone crusher, Miner. Eng., 74, 112, 10.1016/j.mineng.2015.01.013 Cleary, 2017, Analysis of cone crusher performance with changes in material properties and operating conditions using DEM, Miner. Eng., 100, 49, 10.1016/j.mineng.2016.10.005 Qiu, 2016, DEM simulations in mining and mineral processing Johansson, 2017, Cone crusher performance evaluation using dem simulations and laboratory experiments for model validation, Miner. Eng., 103-104, 93, 10.1016/j.mineng.2016.09.015 Potyondy, 2004, A bonded-particle model for rock, Int. J. Rock Mech. Min. Sci., 41, 1329, 10.1016/j.ijrmms.2004.09.011 Barrios, 2016, A preliminary model of high pressure roll grinding using the discrete element method and multi-body dynamics coupling, Int. J. Miner. Process., 156, 32, 10.1016/j.minpro.2016.06.009 Cleary, 1998, The filling of dragline buckets, Math. Eng. Ind., 7, 1 Morrison, 2004, Using DEM to model ore breakage within a pilot scale sag mill, Miner. Eng., 17, 1117, 10.1016/S0892-6875(04)00181-5 Cleary, 1997, Efficient collision detection for three dimensional super-ellipsoidal particles, 139 Cleary, 1998, How well do discrete element granular flow models capture the essentials of mixing and segregation processes?, Appl. Math. Model., 22, 995, 10.1016/S0307-904X(98)10032-X Cleary, 2003, Comparison of DEM and experiment for a scale model SAG mill, Int. J. Min. Processing, 68, 129, 10.1016/S0301-7516(02)00065-0 Hilton, 2010, Dynamics of gas–solid fluidised beds with non-spherical particle geometry, Chem. Eng. Sci., 65, 1584, 10.1016/j.ces.2009.10.028 Hopkins, 1991, On the numerical simulation of the sea ice ridging process, J. Geophys. Res., 96, 4809, 10.1029/90JC02375 Hopkins, 1997, Onshore ice pile-up: a comparison between experiments and simulations, Cold Reg. Sci. Technol., 26, 205, 10.1016/S0165-232X(97)00015-3 Owen, 2009, Quasi-static fall of planar granular columns: comparison of 2D and 3D discrete element modelling with experiment, Geomech. Geoeng., 4, 55, 10.1080/17486020902767388 McBride, 2009, An investigation and optimization of the ‘OLDS’ elevator using discrete element modeling, Powder Technol., 193, 216, 10.1016/j.powtec.2009.03.014 Das, 2010, Effect of rock shapes on brittle fracture using smoothed particle hydrodynamics, J. Theor. Appl. Fract. Mech., 53, 47, 10.1016/j.tafmec.2009.12.004 Das, 2015, Application of a mesh-free method to modelling brittle fracture and fragmentation of a concrete column during projectile impact, Comput. Concrete, 16, 933, 10.12989/cac.2015.16.6.933 Thornton, 2013, An investigation of the comparative behaviour of alternative contact force models during inelastic collisions, Powder Technol., 233, 30, 10.1016/j.powtec.2012.08.012 P.W., Cleary, Discrete Element Method, US Patent 9,633,142, (2017), Vogel, 2004, Determination of material properties relevant to grinding by practicable labscale milling tests, Int. J. Miner. Process., 74S, S329, 10.1016/j.minpro.2004.07.018 Morrison, 2007, Modelling of incremental rock breakage by impact - for use in DEM models, Miner. Eng., 20, 303, 10.1016/j.mineng.2006.10.015 Narayan, 1983, Breakage characteristics for ores in ball mill modelling, Proc. AusIMM, 286, 31 Cleary, 2020, Workspace: a workflow platform for supporting development and deployment of modelling and simulation, Math. Comput. Simul, 175, 25, 10.1016/j.matcom.2019.11.011 Cleary, 2000, Centrifugal mill charge motion: comparison of DEM predictions with experiment, Int. J. Min. Proc., 59, 131, 10.1016/S0301-7516(99)00063-0 Govender, 2013, Comparisons of PEPT derived charge features in wet milling environments with a friction-adjusted DEM model, Chem. Eng. Sci., 97, 162, 10.1016/j.ces.2013.04.023 Bengtsson, 2008, Modelling of output and power consumption in vertical shaft impact crushers, Int. J. Miner. Process., 88, 18, 10.1016/j.minpro.2008.04.005 Cleary, 2020, A more general approach to measurement and analysis of cone crusher geometry, to appear, Miner. Eng. Andersen, 1990, The influence of liner condition on cone crusher performance, Miner. Eng., 3, 105, 10.1016/0892-6875(90)90084-O Andersen, 1988 Delaney, 2013, Predicting breakage and the evolution of rock size and shape distributions in AG and SAG mills using DEM, Miner. Eng., 50–51, 132, 10.1016/j.mineng.2013.01.007