Advanced carbon materials with different spatial dimensions for supercapacitors

Nano Materials Science - Tập 3 - Trang 241-267 - 2021
Xiaoliang Wu1, Ruonan Liu1, Jing Zhao2, Zhuangjun Fan3
1College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
2Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
3College of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China

Tài liệu tham khảo

Simon, 2020, Nat. Mater., 19, 1151, 10.1038/s41563-020-0747-z Yan, 2014, Advanced Energy Materials, 4, 1300816, 10.1002/aenm.201300816 Wang, 2020, InfoMat, 2, 113, 10.1002/inf2.12037 Yu, 2015, Energy Environ. Sci., 8, 702, 10.1039/C4EE03229B Bi, 2019, J. Mater. Chem., 7, 16028, 10.1039/C9TA04436A Markoulidis, 2020, Carbon, 164, 422, 10.1016/j.carbon.2020.04.017 Lei, 2013, Surf. Coating. Technol., 232, 326, 10.1016/j.surfcoat.2013.05.027 Gou, 2020, Nano-Micro Lett., 12, 98, 10.1007/s40820-020-00430-4 Wang, 2016, Energy Environ. Sci., 9, 729, 10.1039/C5EE03109E Xu, 2018, Nanoscale, 10, 21604, 10.1039/C8NR07560C Yu, 2017, Chempluschem, 82, 872, 10.1002/cplu.201700182 Hao, 2018, J. Mater. Chem., 6, 8053, 10.1039/C8TA00683K Lee, 2014, ACS Appl. Mater. Interfaces, 6, 13968, 10.1021/am5033378 Jiang, 2017, Science China Materials, 61, 133, 10.1007/s40843-017-9169-4 Wickramaratne, 2014, Chem. Mater., 26, 2820, 10.1021/cm5001895 Xue, 2019, ACS Sustain. Chem. Eng., 7, 7024, 10.1021/acssuschemeng.8b06774 Du, 2018, Adv. Funct. Mater., 28, 9 Chen, 2017, J. Power Sources, 363, 356, 10.1016/j.jpowsour.2017.07.037 Du, 2019, Chin. Chem. Lett., 30, 1423, 10.1016/j.cclet.2019.03.004 Zhao, 2016, Appl. Surf. Sci., 369, 460, 10.1016/j.apsusc.2016.02.085 You, 2011, Chem. Commun., 47, 12364, 10.1039/c1cc15348j Du, 2019, ChemSusChem, 12, 303, 10.1002/cssc.201802403 Sun, 2016, J. Mater. Chem., 4, 12088, 10.1039/C6TA04330E Liu, 2016, ACS Appl. Mater. Interfaces, 8, 7194, 10.1021/acsami.6b02404 Zhang, 2018, J. Mater. Chem., 6, 23318, 10.1039/C8TA07438K Du, 2019, Nanoscale, 11, 22796, 10.1039/C9NR07428G Du, 2019, Nanoscale, 11, 4453, 10.1039/C8NR08784A Wang, 2015, Catal. Today, 243, 199, 10.1016/j.cattod.2014.08.037 Du, 2019, J. Mater. Chem., 7, 1038, 10.1039/C8TA10266J Wu, 2018, Small, 14 Zhang, 2017, Carbon, 115, 134, 10.1016/j.carbon.2017.01.005 Lv, 2014, Nanotechnology, 25, 235401, 10.1088/0957-4484/25/23/235401 Athika, 2019, Mater. Lett., 241, 156, 10.1016/j.matlet.2019.01.064 Hoang, 2019, J. Electroanal. Chem., 832, 87, 10.1016/j.jelechem.2018.10.050 Chen, 2016, Sci. Rep., 6, 19028, 10.1038/srep19028 Zhu, 2015, J. Mater. Chem., 3, 866, 10.1039/C4TA05507A Wang, 2019, Advanced Materials Interfaces, 6, 1900049, 10.1002/admi.201900049 Unnikrishnan, 2016, ACS Sustain. Chem. Eng., 4, 3008, 10.1021/acssuschemeng.5b01700 Lv, 2017, ACS Appl. Mater. Interfaces, 9, 40394, 10.1021/acsami.7b14761 Lv, 2018, J. Power Sources, 398, 167, 10.1016/j.jpowsour.2018.07.059 Xu, 2016, RSC Adv., 6, 5541, 10.1039/C5RA24192H De, 2017, Carbon, 122, 247, 10.1016/j.carbon.2017.06.076 Wei, 2017, Nano Research, 10, 3005, 10.1007/s12274-017-1516-4 Wei, 2017, Mater. Lett., 186, 131, 10.1016/j.matlet.2016.09.126 Ji, 2019, J. Colloid Interface Sci., 542, 392, 10.1016/j.jcis.2019.02.037 Lee, 2016, Nanomater. Energy, 26, 746, 10.1016/j.nanoen.2016.06.030 Liu, 2013, Adv. Funct. Mater., 23, 4111, 10.1002/adfm.201203771 Xu, 2017, Appl. Surf. Sci., 422, 847, 10.1016/j.apsusc.2017.05.189 Qing, 2019, J. Mater. Chem., 7, 6021, 10.1039/C8TA11620B Zhang, 2018, Adv. Funct. Mater., 28, 1805898, 10.1002/adfm.201805898 Jia, 2018, Adv. Sci., 5, 1700887, 10.1002/advs.201700887 Islam, 2017, Materials Today Communications, 10, 112, 10.1016/j.mtcomm.2016.11.002 Zheng, 2019, Appl. Surf. Sci., 480, 727, 10.1016/j.apsusc.2019.02.243 Luo, 2019, Carbon, 146, 1, 10.1016/j.carbon.2019.01.078 Chen, 2014, Phys. Chem. Chem. Phys., 16, 19307, 10.1039/C4CP02761B Liu, 2013, Nanoscale, 5, 6053, 10.1039/c3nr01139a Wang, 2011, J. Power Sources, 196, 5209, 10.1016/j.jpowsour.2011.02.019 Kim, 2012, Nanotechnology, 23, 155401, 10.1088/0957-4484/23/15/155401 Ding, 2018, J. Power Sources, 398, 113, 10.1016/j.jpowsour.2018.07.063 Dubey, 2019, Ionics, 25, 1419, 10.1007/s11581-019-02874-0 Lu, 2009, J. Power Sources, 189, 1270, 10.1016/j.jpowsour.2009.01.009 Yoon, 2004, Chem. Phys. Lett., 388, 170, 10.1016/j.cplett.2004.02.071 Li, 2004, Mater. Lett., 58, 3774, 10.1016/j.matlet.2004.07.027 Izadi-Najafabadi, 2010, Adv. Mater., 22, 235, 10.1002/adma.200904349 Azam, 2013, Ionics, 19, 1455, 10.1007/s11581-013-0979-x Fedorovskaya, 2014, Electrochim. Acta, 139, 165, 10.1016/j.electacta.2014.06.176 Kao, 2016, Sensor Actuator Phys., 240, 160, 10.1016/j.sna.2016.01.044 Pitkanen, 2017, Sci. Rep., 7, 16594, 10.1038/s41598-017-16604-x Zhu, 2018, Nanotechnology, 29, 195405, 10.1088/1361-6528/aab124 Zhang, 2017, Advanced Energy Materials, 7, 6 Hu, 2010, Nano Lett., 10, 708, 10.1021/nl903949m Niu, 2011, Energy Environ. Sci., 4, 1440, 10.1039/c0ee00261e Hu, 2012, Appl. Phys. Lett., 100, 104103, 10.1063/1.3691948 Li, 2013, Nanoscale, 5, 8472, 10.1039/c3nr01932b Yang, 2013, Angew. Chem. Int. Ed., 52, 13453, 10.1002/anie.201307619 Hu, 2009, Proc. Natl. Acad. Sci. U. S. A, 106, 21490, 10.1073/pnas.0908858106 Chen, 2017, Energy Environ. Sci., 10, 1777, 10.1039/C7EE00488E Tan, 2017, J. Mater. Chem., 5, 23620, 10.1039/C7TA07024A Chen, 2012, ACS Nano, 6, 7092, 10.1021/nn302147s Yu, 2019, Sci. Bull., 64, 1617, 10.1016/j.scib.2019.08.008 Levitt, 2019, J. Mater. Chem., 7, 269, 10.1039/C8TA09810G Zhang, 2016, J. Power Sources, 324, 294, 10.1016/j.jpowsour.2016.05.057 Tan, 2017, J. Mater. Chem., 5, 23620, 10.1039/C7TA07024A Na, 2017, J. Mater. Chem., 5, 17379, 10.1039/C7TA04406B Wang, 2018, ACS Appl. Energy Mater., 1, 431, 10.1021/acsaem.7b00083 Liu, 2015, ACS Appl. Mater. Interfaces, 7, 23515, 10.1021/acsami.5b06107 Liu, 2020, ACS Appl. Mater. Interfaces, 12, 4777, 10.1021/acsami.9b19977 Liang, 2009, Chem. Commun., 809, 10.1039/B819202B Li, 2011, Advanced Energy Materials, 1, 382, 10.1002/aenm.201000096 Yu, 2019, Sci. Bull., 64, 1617, 10.1016/j.scib.2019.08.008 Liang, 2015, Carbon, 94, 342, 10.1016/j.carbon.2015.07.001 Song, 2016, Nanomater. Energy, 19, 117, 10.1016/j.nanoen.2015.10.004 Hu, 2016, ACS Sustain. Chem. Eng., 4, 1201, 10.1021/acssuschemeng.5b01263 Cheng, 2016, J. Phys. Chem. C, 120, 2079, 10.1021/acs.jpcc.5b11280 Li, 2015, ACS Cent. Sci., 1, 261, 10.1021/acscentsci.5b00191 Jiang, 2019, RSC Adv., 9, 23324, 10.1039/C9RA03361K Duan, 2016, Nanomater. Energy, 27, 482, 10.1016/j.nanoen.2016.07.034 Li, 2018, Carbon, 137, 31, 10.1016/j.carbon.2018.05.011 Long, 2014, Adv. Funct. Mater., 24, 3953, 10.1002/adfm.201304269 Chen, 2014, Adv. Funct. Mater., 24, 5104, 10.1002/adfm.201400590 Wang, 2016, Nanoscale, 8, 9146, 10.1039/C6NR01485B Lai, 2016, Small, 12, 3235, 10.1002/smll.201600412 Xia, 2017, Advanced Energy Materials, 7, 9 Hao, 2017, J. Power Sources, 352, 34, 10.1016/j.jpowsour.2017.03.088 Berenguer, 2016, Green Chem., 18, 1506, 10.1039/C5GC02409A Sahu, 2015, ACS Appl. Mater. Interfaces, 7, 3110, 10.1021/am5071706 Ahuja, 2015, J. Mater. Chem., 3, 4931, 10.1039/C4TA05865H Lalwani, 2017, Electrochim. Acta, 224, 517, 10.1016/j.electacta.2016.12.057 Kosynkin, 2009, Nature, 458, 872, 10.1038/nature07872 Terrones, 2010, Nano Today, 5, 351, 10.1016/j.nantod.2010.06.010 Sheng, 2018, Adv. Funct. Mater., 28, 9 Wang, 2014, Adv. Mater., 26, 2676, 10.1002/adma.201304756 Jiang, 2016, Ionics, 22, 1881, 10.1007/s11581-016-1723-0 Ouyang, 2016, J. Mater. Chem., 4, 17801, 10.1039/C6TA08155J Wang, 2017, Energy Storage Materials, 7, 216, 10.1016/j.ensm.2017.03.002 Xie, 2018, ChemElectroChem, 5, 571, 10.1002/celc.201701020 Wang, 2015, Adv. Mater., 27, 3572, 10.1002/adma.201500707 Zheng, 2015, Adv. Mater., 27, 5388, 10.1002/adma.201501452 Liu, 2020, Microporous Mesoporous Mater., 295, 7, 10.1016/j.micromeso.2019.109954 Fan, 2012, Advanced Energy Materials, 2, 419, 10.1002/aenm.201100654 Stoller, 2008, Nano Lett., 8, 3498, 10.1021/nl802558y Choi, 2012, Nanomater. Energy, 1, 534, 10.1016/j.nanoen.2012.05.001 Chen, 2012, Carbon, 50, 3572, 10.1016/j.carbon.2012.03.029 Zhou, 2015, Energy Storage Materials, 1, 103, 10.1016/j.ensm.2015.09.002 Balaji, 2019, Appl. Surf. Sci., 491, 560, 10.1016/j.apsusc.2019.06.151 Dai, 2018, J. Power Sources, 387, 43, 10.1016/j.jpowsour.2018.03.055 Jeong, 2011, Nano Lett., 11, 2472, 10.1021/nl2009058 Wen, 2012, Adv. Mater., 24, 5610, 10.1002/adma.201201920 Wang, 2014, Energy, 70, 612, 10.1016/j.energy.2014.04.034 Kota, 2016, J. Power Sources, 303, 372, 10.1016/j.jpowsour.2015.11.006 Xie, 2016, Carbon, 99, 35, 10.1016/j.carbon.2015.11.077 Liu, 2016, Nat. Commun., 7, 9 Wu, 2019, Microporous Mesoporous Mater., 290, 109556, 10.1016/j.micromeso.2019.06.018 Wu, 2012, Adv. Mater., 24, 5130, 10.1002/adma.201201948 Yan, 2014, ACS Nano, 8, 4720, 10.1021/nn500497k Zhao, 2012, Angew. Chem. Int. Ed., 51, 11371, 10.1002/anie.201206554 Salunkhe, 2014, Chem. Eur J., 20, 13838, 10.1002/chem.201403649 Han, 2013, ACS Nano, 7, 19, 10.1021/nn3034309 Wang, 2015, Sci. Rep., 5, 9591, 10.1038/srep09591 Wu, 2012, Adv. Mater., 24, 5130, 10.1002/adma.201201948 Wu, 2019, Microporous Mesoporous Mater., 290, 109556, 10.1016/j.micromeso.2019.06.018 Han, 2014, Adv. Mater., 26, 849, 10.1002/adma.201303115 Amiri, 2016, Sci. Rep., 6, 32686, 10.1038/srep32686 Xu, 2015, Nano Lett., 15, 4605, 10.1021/acs.nanolett.5b01212 Fan, 2012, Carbon, 50, 1699, 10.1016/j.carbon.2011.12.016 Li, 2015, Nanoscale, 7, 18459, 10.1039/C5NR06113J Xia, 2017, Microporous Mesoporous Mater., 237, 228, 10.1016/j.micromeso.2016.09.015 Zhang, 2014, RSC Adv., 4, 45862, 10.1039/C4RA07869A Wang, 2014, Nanoscale, 6, 6577, 10.1039/C4NR00538D Qin, 2016, Nanomater. Energy, 24, 158, 10.1016/j.nanoen.2016.04.019 Zhu, 2011, Science, 332, 1537, 10.1126/science.1200770 Murali, 2012, Carbon, 50, 3482, 10.1016/j.carbon.2012.03.014 Xu, 2014, Nat. Commun., 5, 4554, 10.1038/ncomms5554 Zuo, 2015, Small, 11, 4922, 10.1002/smll.201501434 Li, 2020, Nat. Energy, 5 Xu, 2013, ACS Nano, 7, 4042, 10.1021/nn4000836 Xu, 2010, ACS Nano, 4, 4324, 10.1021/nn101187z Luan, 2013, J. Mater. Chem., 1, 208, 10.1039/C2TA00444E Chang, 2013, J. Power Sources, 238, 492, 10.1016/j.jpowsour.2013.04.074 Yu, 2016, Carbon, 101, 49, 10.1016/j.carbon.2016.01.073 Liu, 2016, Electrochim. Acta, 213, 291, 10.1016/j.electacta.2016.07.131 Chen, 2013, Nanomater. Energy, 2, 249, 10.1016/j.nanoen.2012.09.003 Li, 2017, J. Power Sources, 345, 146, 10.1016/j.jpowsour.2017.02.011 An, 2016, J. Power Sources, 312, 146, 10.1016/j.jpowsour.2016.02.057 Tan, 2018, Appl. Surf. Sci., 455, 683, 10.1016/j.apsusc.2018.05.161 Kong, 2018, Microporous Mesoporous Mater., 268, 260, 10.1016/j.micromeso.2018.04.029 Zhang, 2018, Electrochim. Acta, 278, 51, 10.1016/j.electacta.2018.05.018 Liu, 2018, J. Power Sources, 384, 214, 10.1016/j.jpowsour.2018.02.087 Zou, 2020, Carbon, 159, 94, 10.1016/j.carbon.2019.12.018 Jiang, 2015, Nanomater. Energy, 11, 471, 10.1016/j.nanoen.2014.11.007 Bai, 2010, Nat. Nanotechnol., 5, 190, 10.1038/nnano.2010.8 Ning, 2011, Chem Commun (Camb), 47, 5976, 10.1039/c1cc11159k Su, 2017, Appl. Surf. Sci., 426, 924, 10.1016/j.apsusc.2017.07.251 Mao, 2012, ACS Nano, 6, 7505, 10.1021/nn302818j Deng, 2016, Mater. Today, 19, 197, 10.1016/j.mattod.2015.10.002 Wen, 2012, Adv. Mater., 24, 5610, 10.1002/adma.201201920 Yan, 2012, Carbon, 50, 2179, 10.1016/j.carbon.2012.01.028 Yang, 2018, J. Power Sources, 399, 115, 10.1016/j.jpowsour.2018.07.061 Zhao, 2020, ACS Sustain. Chem. Eng., 8, 8664, 10.1021/acssuschemeng.0c01661 He, 2019, Nano Today, 24, 103, 10.1016/j.nantod.2018.12.004 Chang, 2016, RSC Adv., 6, 71360, 10.1039/C6RA10947K Wang, 2018, J. Mater. Sci. Mater. Electron., 29, 5363, 10.1007/s10854-017-8502-1 Fan, 2015, Advanced Energy Materials, 5, 7 Wang, 2015, Adv. Funct. Mater., 25, 5420, 10.1002/adfm.201502025 Zhuang, 2014, Adv. Mater., 26, 3081, 10.1002/adma.201305040 Yuan, 2016, ChemElectroChem, 3, 822, 10.1002/celc.201500516 Cai, 2018, Electrochim. Acta, 283, 904, 10.1016/j.electacta.2018.07.037 Lyu, 2018, Carbon, 139, 740, 10.1016/j.carbon.2018.07.037 Wang, 2016, J. Alloys Compd., 677, 105, 10.1016/j.jallcom.2016.03.232 Lyu, 2018, Carbon, 139, 740, 10.1016/j.carbon.2018.07.037 Sun, 2013, J. Mater. Chem., 1, 6462, 10.1039/c3ta10897j Yun, 2013, Adv. Mater., 25, 1993, 10.1002/adma.201204692 Zheng, 2014, Chem. Mater., 26, 6896, 10.1021/cm503845q Chang, 2017, Chem. Eng. J., 312, 191, 10.1016/j.cej.2016.11.129 Qin, 2018, ACS Sustain. Chem. Eng., 6, 15708, 10.1021/acssuschemeng.8b04227 Li, 2019, ACS Sustain. Chem. Eng., 7, 13827, 10.1021/acssuschemeng.9b01779 Li, 2019, Sustainable Energy & Fuels, 3, 499, 10.1039/C8SE00449H Wen, 2020, J. Appl. Polym. Sci., 137, 10 Fuertes, 2015, ACS Appl. Mater. Interfaces, 7, 4344, 10.1021/am508794f Sevilla, 2014, ACS Nano, 8, 5069, 10.1021/nn501124h Li, 2019, Carbon, 144, 540, 10.1016/j.carbon.2018.12.061 Li, 2016, Nanomater. Energy, 19, 165, 10.1016/j.nanoen.2015.10.038 Yu, 2015, J. Mater. Chem., 3, 15792, 10.1039/C5TA02743H Lei, 2013, J. Mater. Chem., 1, 6037, 10.1039/c3ta01638b Chen, 2015, Mater. Lett., 157, 30, 10.1016/j.matlet.2015.05.082 Chen, 2016, J. Mater. Sci., 51, 4601, 10.1007/s10853-016-9774-1 Tian, 2019, ACS Appl. Mater. Interfaces, 11, 43509, 10.1021/acsami.9b15058 Zhao, 2015, Electrochim. Acta, 154, 110, 10.1016/j.electacta.2014.12.052 Liu, 2018, Carbon, 130, 680, 10.1016/j.carbon.2018.01.046 Zhang, 2017, Nano Lett., 17, 3097, 10.1021/acs.nanolett.7b00533 Chen, 2018, Small, 14, 8 Sun, 2016, Electrochim. Acta, 194, 168, 10.1016/j.electacta.2016.02.066 Gopalakrishnan, 2018, ChemElectroChem, 5, 531, 10.1002/celc.201700962 Li, 2015, Electrochim. Acta, 164, 252, 10.1016/j.electacta.2015.02.218 Geng, 2016, Electrochim. Acta, 191, 854, 10.1016/j.electacta.2016.01.148 Zhang, 2018, J. Mater. Chem., 6, 2353, 10.1039/C7TA09644E Li, 2019, Fuel Process. Technol., 192, 239, 10.1016/j.fuproc.2019.04.037 Wen, 2019, Nanotechnology, 30, 295703, 10.1088/1361-6528/ab0ee0 Wang, 2014, Carbon, 67, 119, 10.1016/j.carbon.2013.09.070 Chen, 2015, RSC Adv., 5, 98177, 10.1039/C5RA15967A He, 2013, J. Mater. Chem., 1, 9440, 10.1039/c3ta10501f Zhu, 2015, J. Mater. Chem., 3, 22266, 10.1039/C5TA04646G Li, 2019, Carbon, 141, 739, 10.1016/j.carbon.2018.09.061 Gao, 2016, J. Mater. Chem., 4, 7445, 10.1039/C6TA01314G Zhang, 2016, Electrochim. Acta, 196, 189, 10.1016/j.electacta.2016.02.050 Kim, 2018, Carbon, 126, 215, 10.1016/j.carbon.2017.10.020 Zhang, 2019, ACS Sustain. Chem. Eng., 7, 5717, 10.1021/acssuschemeng.8b05024 Fuertes, 2015, ACS Appl. Mater. Interfaces, 7, 4344, 10.1021/am508794f Luo, 2016, Carbon, 100, 214, 10.1016/j.carbon.2016.01.004 Liu, 2016, Carbon, 100, 664, 10.1016/j.carbon.2016.01.069 Sun, 2019, J. Alloys Compd., 803, 401, 10.1016/j.jallcom.2019.06.212 Wu, 2019, Carbon, 153, 225, 10.1016/j.carbon.2019.07.020 Jiang, 2019, J. Power Sources, 409, 13, 10.1016/j.jpowsour.2018.10.086 Osman, 2018, J. Power Sources, 391, 162, 10.1016/j.jpowsour.2018.04.081 Jayaramulu, 2018, Adv. Mater., 30, 9, 10.1002/adma.201705789 Xiong, 2017, J. Mater. Chem., 5, 18242, 10.1039/C7TA05880B Sun, 2017, ACS Appl. Mater. Interfaces, 9, 26088, 10.1021/acsami.7b07877 Hu, 2014, J. Mater. Chem., 2, 11753, 10.1039/C4TA01269K Liu, 2016, Nanomater. Energy, 22, 255, 10.1016/j.nanoen.2016.02.022 Wang, 2017, Nat. Commun., 8, 9, 10.1038/s41467-017-00020-w Chen, 2016, Nanomater. Energy, 25, 193, 10.1016/j.nanoen.2016.04.037 Peng, 2019, Advanced Energy Materials, 9, 9 Wu, 2015, Nanomater. Energy, 13, 527, 10.1016/j.nanoen.2015.03.013 Ma, 2019, J. Mater. Chem., 7, 7591, 10.1039/C9TA00038K Qi, 2018, Chemistry, 24, 18097, 10.1002/chem.201804302 Qiao, 2014, Bioresour. Technol., 163, 386, 10.1016/j.biortech.2014.04.095 Hao, 2014, Nanoscale, 6, 12120, 10.1039/C4NR03574G Chen, 2015, Electrochim. Acta, 180, 241, 10.1016/j.electacta.2015.08.133 Song, 2015, J. Mater. Chem., 3, 18154, 10.1039/C5TA04721H Luo, 2015, J. Mater. Chem., 3, 3667, 10.1039/C4TA05843G Zhao, 2015, ACS Appl. Mater. Interfaces, 7, 1132, 10.1021/am506815f Guo, 2016, ACS Appl. Mater. Interfaces, 8, 33626, 10.1021/acsami.6b11162 Ma, 2016, Chem. Commun., 52, 6673, 10.1039/C6CC02147F Zhang, 2016, ChemSusChem, 9, 932, 10.1002/cssc.201501624 Sun, 2020, Chin. Chem. Lett., 31, 2235, 10.1016/j.cclet.2019.11.023 Salinas-Torres, 2016, J. Power Sources, 326, 641, 10.1016/j.jpowsour.2016.03.096 Qi, 2017, Electrochim. Acta, 246, 59, 10.1016/j.electacta.2017.05.192 Li, 2017, Appl. Surf. Sci., 416, 918, 10.1016/j.apsusc.2017.04.162 Guo, 2017, Green Chem., 19, 2595, 10.1039/C7GC00506G Huang, 2017, Electrochim. Acta, 258, 504, 10.1016/j.electacta.2017.11.092 Li, 2017, Electrochim. Acta, 235, 561, 10.1016/j.electacta.2017.03.147 Zheng, 2017, J. Power Sources, 366, 270, 10.1016/j.jpowsour.2017.09.034 Liang, 2017, Microporous Mesoporous Mater., 251, 77, 10.1016/j.micromeso.2017.05.044 Demir, 2017, RSC Adv., 7, 42430, 10.1039/C7RA07984B Chen, 2017, Sci. Rep., 7, 7362, 10.1038/s41598-017-06730-x Gao, 2018, ACS Appl. Mater. Interfaces, 10, 28918, 10.1021/acsami.8b05891 Sun, 2018, Appl. Surf. Sci., 427, 807, 10.1016/j.apsusc.2017.07.220 Yang, 2018, Carbon, 127, 557, 10.1016/j.carbon.2017.11.050 Ouyang, 2018, Chem. Eng. J., 352, 459, 10.1016/j.cej.2018.06.184 Zhou, 2018, Carbohydr. Polym., 198, 364, 10.1016/j.carbpol.2018.06.095 Yu, 2018, ChemSusChem, 11, 1678, 10.1002/cssc.201800202 Zhang, 2018, J. Colloid Interface Sci., 530, 338, 10.1016/j.jcis.2018.06.076 Huo, 2018, J. Power Sources, 387, 81, 10.1016/j.jpowsour.2018.03.061 Guo, 2018, ACS Sustain. Chem. Eng., 6, 11441, 10.1021/acssuschemeng.8b01435 Lin, 2019, ACS Sustain. Chem. Eng., 7, 3389, 10.1021/acssuschemeng.8b05593 Zeng, 2019, Appl. Surf. Sci., 467–468, 229, 10.1016/j.apsusc.2018.10.089 Hu, 2019, J. Alloys Compd., 785, 110, 10.1016/j.jallcom.2019.01.160 Yang, 2019, Carbon, 147, 540, 10.1016/j.carbon.2019.03.023 Wan, 2019, J. Alloys Compd., 790, 760, 10.1016/j.jallcom.2019.03.241 Huang, 2019, Journal of the Taiwan Institute of Chemical Engineers, 96, 672, 10.1016/j.jtice.2018.12.024 Wang, 2020, Chem. Eng. J., 384 Wang, 2018, J. Mater. Sci., 54, 4917, 10.1007/s10853-018-03215-8 Shi, 2019, Sustainable Energy & Fuels, 3, 1201, 10.1039/C8SE00574E Qie, 2013, Energy Environ. Sci., 6, 10.1039/c3ee41638k Guan, 2018, ACS Sustain. Chem. Eng., 7, 2116, 10.1021/acssuschemeng.8b04736 Yun, 2013, J. Power Sources, 234, 285, 10.1016/j.jpowsour.2013.01.169 Guo, 2014, J. Power Sources, 252, 235, 10.1016/j.jpowsour.2013.11.114 Li, 2014, Chemistry, 20, 13314, 10.1002/chem.201402897 Zhou, 2015, Electrochim. Acta, 180, 1007, 10.1016/j.electacta.2015.09.038 Li, 2015, J. Mater. Chem., 3, 14817, 10.1039/C5TA02702K Zhou, 2015, RSC Adv., 5, 46947, 10.1039/C5RA07807E Yao, 2016, RSC Adv., 6, 43748, 10.1039/C5RA27000F Hu, 2018, J. Electroanal. Chem., 823, 54, 10.1016/j.jelechem.2018.05.034 Wang, 2019, Microporous Mesoporous Mater., 282, 114, 10.1016/j.micromeso.2019.03.031 Bai, 2017, ACS Sustain. Chem. Eng., 5, 9390, 10.1021/acssuschemeng.7b02488 Miaoa, 2019, Chin. Chem. Lett., 30, 1445, 10.1016/j.cclet.2019.03.010 Guan, 2017, J. Mater. Chem., 5, 15869, 10.1039/C7TA02966G Liu, 2017, J. Power Sources, 361, 70, 10.1016/j.jpowsour.2017.06.058 Wang, 2018, Appl. Surf. Sci., 435, 424, 10.1016/j.apsusc.2017.11.103 Wang, 2018, ChemSusChem, 11, 3932, 10.1002/cssc.201801892 Mehare, 2017, Energy Fuels, 32, 908, 10.1021/acs.energyfuels.7b02305 Wang, 2019, ChemSusChem, 12, 3541, 10.1002/cssc.201901137 Zhou, 2019, J. Colloid Interface Sci., 545, 25, 10.1016/j.jcis.2019.03.010 Yu, 2009, J. Phys. Chem. Lett., 1, 467, 10.1021/jz9003137 Fan, 2010, Adv. Mater., 22, 3723, 10.1002/adma.201001029 Xu, 2019, Carbon, 152, 134, 10.1016/j.carbon.2019.06.005 Jiang, 2015, Nanomater. Energy, 11, 471, 10.1016/j.nanoen.2014.11.007 Pham, 2015, ACS Nano, 9, 2018, 10.1021/nn507079x Yan, 2010, Carbon, 48, 1731, 10.1016/j.carbon.2010.01.014 Lei, 2011, Energy Environ. Sci., 4, 1866, 10.1039/c1ee01094h Guo, 2011, Energy Environ. Sci., 4, 4504, 10.1039/c1ee01676h Ma, 2014, Electrochim. Acta, 115, 566, 10.1016/j.electacta.2013.11.028 Li, 2018, Carbon, 129, 236, 10.1016/j.carbon.2017.11.099 Kshetri, 2020, Chem. Eng. J., 380, 11, 10.1016/j.cej.2019.122543 Jiang, 2016, J. Power Sources, 307, 190, 10.1016/j.jpowsour.2015.12.081