Advanced carbon materials with different spatial dimensions for supercapacitors
Tài liệu tham khảo
Simon, 2020, Nat. Mater., 19, 1151, 10.1038/s41563-020-0747-z
Yan, 2014, Advanced Energy Materials, 4, 1300816, 10.1002/aenm.201300816
Wang, 2020, InfoMat, 2, 113, 10.1002/inf2.12037
Yu, 2015, Energy Environ. Sci., 8, 702, 10.1039/C4EE03229B
Bi, 2019, J. Mater. Chem., 7, 16028, 10.1039/C9TA04436A
Markoulidis, 2020, Carbon, 164, 422, 10.1016/j.carbon.2020.04.017
Lei, 2013, Surf. Coating. Technol., 232, 326, 10.1016/j.surfcoat.2013.05.027
Gou, 2020, Nano-Micro Lett., 12, 98, 10.1007/s40820-020-00430-4
Wang, 2016, Energy Environ. Sci., 9, 729, 10.1039/C5EE03109E
Xu, 2018, Nanoscale, 10, 21604, 10.1039/C8NR07560C
Yu, 2017, Chempluschem, 82, 872, 10.1002/cplu.201700182
Hao, 2018, J. Mater. Chem., 6, 8053, 10.1039/C8TA00683K
Lee, 2014, ACS Appl. Mater. Interfaces, 6, 13968, 10.1021/am5033378
Jiang, 2017, Science China Materials, 61, 133, 10.1007/s40843-017-9169-4
Wickramaratne, 2014, Chem. Mater., 26, 2820, 10.1021/cm5001895
Xue, 2019, ACS Sustain. Chem. Eng., 7, 7024, 10.1021/acssuschemeng.8b06774
Du, 2018, Adv. Funct. Mater., 28, 9
Chen, 2017, J. Power Sources, 363, 356, 10.1016/j.jpowsour.2017.07.037
Du, 2019, Chin. Chem. Lett., 30, 1423, 10.1016/j.cclet.2019.03.004
Zhao, 2016, Appl. Surf. Sci., 369, 460, 10.1016/j.apsusc.2016.02.085
You, 2011, Chem. Commun., 47, 12364, 10.1039/c1cc15348j
Du, 2019, ChemSusChem, 12, 303, 10.1002/cssc.201802403
Sun, 2016, J. Mater. Chem., 4, 12088, 10.1039/C6TA04330E
Liu, 2016, ACS Appl. Mater. Interfaces, 8, 7194, 10.1021/acsami.6b02404
Zhang, 2018, J. Mater. Chem., 6, 23318, 10.1039/C8TA07438K
Du, 2019, Nanoscale, 11, 22796, 10.1039/C9NR07428G
Du, 2019, Nanoscale, 11, 4453, 10.1039/C8NR08784A
Wang, 2015, Catal. Today, 243, 199, 10.1016/j.cattod.2014.08.037
Du, 2019, J. Mater. Chem., 7, 1038, 10.1039/C8TA10266J
Wu, 2018, Small, 14
Zhang, 2017, Carbon, 115, 134, 10.1016/j.carbon.2017.01.005
Lv, 2014, Nanotechnology, 25, 235401, 10.1088/0957-4484/25/23/235401
Athika, 2019, Mater. Lett., 241, 156, 10.1016/j.matlet.2019.01.064
Hoang, 2019, J. Electroanal. Chem., 832, 87, 10.1016/j.jelechem.2018.10.050
Chen, 2016, Sci. Rep., 6, 19028, 10.1038/srep19028
Zhu, 2015, J. Mater. Chem., 3, 866, 10.1039/C4TA05507A
Wang, 2019, Advanced Materials Interfaces, 6, 1900049, 10.1002/admi.201900049
Unnikrishnan, 2016, ACS Sustain. Chem. Eng., 4, 3008, 10.1021/acssuschemeng.5b01700
Lv, 2017, ACS Appl. Mater. Interfaces, 9, 40394, 10.1021/acsami.7b14761
Lv, 2018, J. Power Sources, 398, 167, 10.1016/j.jpowsour.2018.07.059
Xu, 2016, RSC Adv., 6, 5541, 10.1039/C5RA24192H
De, 2017, Carbon, 122, 247, 10.1016/j.carbon.2017.06.076
Wei, 2017, Nano Research, 10, 3005, 10.1007/s12274-017-1516-4
Wei, 2017, Mater. Lett., 186, 131, 10.1016/j.matlet.2016.09.126
Ji, 2019, J. Colloid Interface Sci., 542, 392, 10.1016/j.jcis.2019.02.037
Lee, 2016, Nanomater. Energy, 26, 746, 10.1016/j.nanoen.2016.06.030
Liu, 2013, Adv. Funct. Mater., 23, 4111, 10.1002/adfm.201203771
Xu, 2017, Appl. Surf. Sci., 422, 847, 10.1016/j.apsusc.2017.05.189
Qing, 2019, J. Mater. Chem., 7, 6021, 10.1039/C8TA11620B
Zhang, 2018, Adv. Funct. Mater., 28, 1805898, 10.1002/adfm.201805898
Jia, 2018, Adv. Sci., 5, 1700887, 10.1002/advs.201700887
Islam, 2017, Materials Today Communications, 10, 112, 10.1016/j.mtcomm.2016.11.002
Zheng, 2019, Appl. Surf. Sci., 480, 727, 10.1016/j.apsusc.2019.02.243
Luo, 2019, Carbon, 146, 1, 10.1016/j.carbon.2019.01.078
Chen, 2014, Phys. Chem. Chem. Phys., 16, 19307, 10.1039/C4CP02761B
Liu, 2013, Nanoscale, 5, 6053, 10.1039/c3nr01139a
Wang, 2011, J. Power Sources, 196, 5209, 10.1016/j.jpowsour.2011.02.019
Kim, 2012, Nanotechnology, 23, 155401, 10.1088/0957-4484/23/15/155401
Ding, 2018, J. Power Sources, 398, 113, 10.1016/j.jpowsour.2018.07.063
Dubey, 2019, Ionics, 25, 1419, 10.1007/s11581-019-02874-0
Lu, 2009, J. Power Sources, 189, 1270, 10.1016/j.jpowsour.2009.01.009
Yoon, 2004, Chem. Phys. Lett., 388, 170, 10.1016/j.cplett.2004.02.071
Li, 2004, Mater. Lett., 58, 3774, 10.1016/j.matlet.2004.07.027
Izadi-Najafabadi, 2010, Adv. Mater., 22, 235, 10.1002/adma.200904349
Azam, 2013, Ionics, 19, 1455, 10.1007/s11581-013-0979-x
Fedorovskaya, 2014, Electrochim. Acta, 139, 165, 10.1016/j.electacta.2014.06.176
Kao, 2016, Sensor Actuator Phys., 240, 160, 10.1016/j.sna.2016.01.044
Pitkanen, 2017, Sci. Rep., 7, 16594, 10.1038/s41598-017-16604-x
Zhu, 2018, Nanotechnology, 29, 195405, 10.1088/1361-6528/aab124
Zhang, 2017, Advanced Energy Materials, 7, 6
Hu, 2010, Nano Lett., 10, 708, 10.1021/nl903949m
Niu, 2011, Energy Environ. Sci., 4, 1440, 10.1039/c0ee00261e
Hu, 2012, Appl. Phys. Lett., 100, 104103, 10.1063/1.3691948
Li, 2013, Nanoscale, 5, 8472, 10.1039/c3nr01932b
Yang, 2013, Angew. Chem. Int. Ed., 52, 13453, 10.1002/anie.201307619
Hu, 2009, Proc. Natl. Acad. Sci. U. S. A, 106, 21490, 10.1073/pnas.0908858106
Chen, 2017, Energy Environ. Sci., 10, 1777, 10.1039/C7EE00488E
Tan, 2017, J. Mater. Chem., 5, 23620, 10.1039/C7TA07024A
Chen, 2012, ACS Nano, 6, 7092, 10.1021/nn302147s
Yu, 2019, Sci. Bull., 64, 1617, 10.1016/j.scib.2019.08.008
Levitt, 2019, J. Mater. Chem., 7, 269, 10.1039/C8TA09810G
Zhang, 2016, J. Power Sources, 324, 294, 10.1016/j.jpowsour.2016.05.057
Tan, 2017, J. Mater. Chem., 5, 23620, 10.1039/C7TA07024A
Na, 2017, J. Mater. Chem., 5, 17379, 10.1039/C7TA04406B
Wang, 2018, ACS Appl. Energy Mater., 1, 431, 10.1021/acsaem.7b00083
Liu, 2015, ACS Appl. Mater. Interfaces, 7, 23515, 10.1021/acsami.5b06107
Liu, 2020, ACS Appl. Mater. Interfaces, 12, 4777, 10.1021/acsami.9b19977
Liang, 2009, Chem. Commun., 809, 10.1039/B819202B
Li, 2011, Advanced Energy Materials, 1, 382, 10.1002/aenm.201000096
Yu, 2019, Sci. Bull., 64, 1617, 10.1016/j.scib.2019.08.008
Liang, 2015, Carbon, 94, 342, 10.1016/j.carbon.2015.07.001
Song, 2016, Nanomater. Energy, 19, 117, 10.1016/j.nanoen.2015.10.004
Hu, 2016, ACS Sustain. Chem. Eng., 4, 1201, 10.1021/acssuschemeng.5b01263
Cheng, 2016, J. Phys. Chem. C, 120, 2079, 10.1021/acs.jpcc.5b11280
Li, 2015, ACS Cent. Sci., 1, 261, 10.1021/acscentsci.5b00191
Jiang, 2019, RSC Adv., 9, 23324, 10.1039/C9RA03361K
Duan, 2016, Nanomater. Energy, 27, 482, 10.1016/j.nanoen.2016.07.034
Li, 2018, Carbon, 137, 31, 10.1016/j.carbon.2018.05.011
Long, 2014, Adv. Funct. Mater., 24, 3953, 10.1002/adfm.201304269
Chen, 2014, Adv. Funct. Mater., 24, 5104, 10.1002/adfm.201400590
Wang, 2016, Nanoscale, 8, 9146, 10.1039/C6NR01485B
Lai, 2016, Small, 12, 3235, 10.1002/smll.201600412
Xia, 2017, Advanced Energy Materials, 7, 9
Hao, 2017, J. Power Sources, 352, 34, 10.1016/j.jpowsour.2017.03.088
Berenguer, 2016, Green Chem., 18, 1506, 10.1039/C5GC02409A
Sahu, 2015, ACS Appl. Mater. Interfaces, 7, 3110, 10.1021/am5071706
Ahuja, 2015, J. Mater. Chem., 3, 4931, 10.1039/C4TA05865H
Lalwani, 2017, Electrochim. Acta, 224, 517, 10.1016/j.electacta.2016.12.057
Kosynkin, 2009, Nature, 458, 872, 10.1038/nature07872
Terrones, 2010, Nano Today, 5, 351, 10.1016/j.nantod.2010.06.010
Sheng, 2018, Adv. Funct. Mater., 28, 9
Wang, 2014, Adv. Mater., 26, 2676, 10.1002/adma.201304756
Jiang, 2016, Ionics, 22, 1881, 10.1007/s11581-016-1723-0
Ouyang, 2016, J. Mater. Chem., 4, 17801, 10.1039/C6TA08155J
Wang, 2017, Energy Storage Materials, 7, 216, 10.1016/j.ensm.2017.03.002
Xie, 2018, ChemElectroChem, 5, 571, 10.1002/celc.201701020
Wang, 2015, Adv. Mater., 27, 3572, 10.1002/adma.201500707
Zheng, 2015, Adv. Mater., 27, 5388, 10.1002/adma.201501452
Liu, 2020, Microporous Mesoporous Mater., 295, 7, 10.1016/j.micromeso.2019.109954
Fan, 2012, Advanced Energy Materials, 2, 419, 10.1002/aenm.201100654
Stoller, 2008, Nano Lett., 8, 3498, 10.1021/nl802558y
Choi, 2012, Nanomater. Energy, 1, 534, 10.1016/j.nanoen.2012.05.001
Chen, 2012, Carbon, 50, 3572, 10.1016/j.carbon.2012.03.029
Zhou, 2015, Energy Storage Materials, 1, 103, 10.1016/j.ensm.2015.09.002
Balaji, 2019, Appl. Surf. Sci., 491, 560, 10.1016/j.apsusc.2019.06.151
Dai, 2018, J. Power Sources, 387, 43, 10.1016/j.jpowsour.2018.03.055
Jeong, 2011, Nano Lett., 11, 2472, 10.1021/nl2009058
Wen, 2012, Adv. Mater., 24, 5610, 10.1002/adma.201201920
Wang, 2014, Energy, 70, 612, 10.1016/j.energy.2014.04.034
Kota, 2016, J. Power Sources, 303, 372, 10.1016/j.jpowsour.2015.11.006
Xie, 2016, Carbon, 99, 35, 10.1016/j.carbon.2015.11.077
Liu, 2016, Nat. Commun., 7, 9
Wu, 2019, Microporous Mesoporous Mater., 290, 109556, 10.1016/j.micromeso.2019.06.018
Wu, 2012, Adv. Mater., 24, 5130, 10.1002/adma.201201948
Yan, 2014, ACS Nano, 8, 4720, 10.1021/nn500497k
Zhao, 2012, Angew. Chem. Int. Ed., 51, 11371, 10.1002/anie.201206554
Salunkhe, 2014, Chem. Eur J., 20, 13838, 10.1002/chem.201403649
Han, 2013, ACS Nano, 7, 19, 10.1021/nn3034309
Wang, 2015, Sci. Rep., 5, 9591, 10.1038/srep09591
Wu, 2012, Adv. Mater., 24, 5130, 10.1002/adma.201201948
Wu, 2019, Microporous Mesoporous Mater., 290, 109556, 10.1016/j.micromeso.2019.06.018
Han, 2014, Adv. Mater., 26, 849, 10.1002/adma.201303115
Amiri, 2016, Sci. Rep., 6, 32686, 10.1038/srep32686
Xu, 2015, Nano Lett., 15, 4605, 10.1021/acs.nanolett.5b01212
Fan, 2012, Carbon, 50, 1699, 10.1016/j.carbon.2011.12.016
Li, 2015, Nanoscale, 7, 18459, 10.1039/C5NR06113J
Xia, 2017, Microporous Mesoporous Mater., 237, 228, 10.1016/j.micromeso.2016.09.015
Zhang, 2014, RSC Adv., 4, 45862, 10.1039/C4RA07869A
Wang, 2014, Nanoscale, 6, 6577, 10.1039/C4NR00538D
Qin, 2016, Nanomater. Energy, 24, 158, 10.1016/j.nanoen.2016.04.019
Zhu, 2011, Science, 332, 1537, 10.1126/science.1200770
Murali, 2012, Carbon, 50, 3482, 10.1016/j.carbon.2012.03.014
Xu, 2014, Nat. Commun., 5, 4554, 10.1038/ncomms5554
Zuo, 2015, Small, 11, 4922, 10.1002/smll.201501434
Li, 2020, Nat. Energy, 5
Xu, 2013, ACS Nano, 7, 4042, 10.1021/nn4000836
Xu, 2010, ACS Nano, 4, 4324, 10.1021/nn101187z
Luan, 2013, J. Mater. Chem., 1, 208, 10.1039/C2TA00444E
Chang, 2013, J. Power Sources, 238, 492, 10.1016/j.jpowsour.2013.04.074
Yu, 2016, Carbon, 101, 49, 10.1016/j.carbon.2016.01.073
Liu, 2016, Electrochim. Acta, 213, 291, 10.1016/j.electacta.2016.07.131
Chen, 2013, Nanomater. Energy, 2, 249, 10.1016/j.nanoen.2012.09.003
Li, 2017, J. Power Sources, 345, 146, 10.1016/j.jpowsour.2017.02.011
An, 2016, J. Power Sources, 312, 146, 10.1016/j.jpowsour.2016.02.057
Tan, 2018, Appl. Surf. Sci., 455, 683, 10.1016/j.apsusc.2018.05.161
Kong, 2018, Microporous Mesoporous Mater., 268, 260, 10.1016/j.micromeso.2018.04.029
Zhang, 2018, Electrochim. Acta, 278, 51, 10.1016/j.electacta.2018.05.018
Liu, 2018, J. Power Sources, 384, 214, 10.1016/j.jpowsour.2018.02.087
Zou, 2020, Carbon, 159, 94, 10.1016/j.carbon.2019.12.018
Jiang, 2015, Nanomater. Energy, 11, 471, 10.1016/j.nanoen.2014.11.007
Bai, 2010, Nat. Nanotechnol., 5, 190, 10.1038/nnano.2010.8
Ning, 2011, Chem Commun (Camb), 47, 5976, 10.1039/c1cc11159k
Su, 2017, Appl. Surf. Sci., 426, 924, 10.1016/j.apsusc.2017.07.251
Mao, 2012, ACS Nano, 6, 7505, 10.1021/nn302818j
Deng, 2016, Mater. Today, 19, 197, 10.1016/j.mattod.2015.10.002
Wen, 2012, Adv. Mater., 24, 5610, 10.1002/adma.201201920
Yan, 2012, Carbon, 50, 2179, 10.1016/j.carbon.2012.01.028
Yang, 2018, J. Power Sources, 399, 115, 10.1016/j.jpowsour.2018.07.061
Zhao, 2020, ACS Sustain. Chem. Eng., 8, 8664, 10.1021/acssuschemeng.0c01661
He, 2019, Nano Today, 24, 103, 10.1016/j.nantod.2018.12.004
Chang, 2016, RSC Adv., 6, 71360, 10.1039/C6RA10947K
Wang, 2018, J. Mater. Sci. Mater. Electron., 29, 5363, 10.1007/s10854-017-8502-1
Fan, 2015, Advanced Energy Materials, 5, 7
Wang, 2015, Adv. Funct. Mater., 25, 5420, 10.1002/adfm.201502025
Zhuang, 2014, Adv. Mater., 26, 3081, 10.1002/adma.201305040
Yuan, 2016, ChemElectroChem, 3, 822, 10.1002/celc.201500516
Cai, 2018, Electrochim. Acta, 283, 904, 10.1016/j.electacta.2018.07.037
Lyu, 2018, Carbon, 139, 740, 10.1016/j.carbon.2018.07.037
Wang, 2016, J. Alloys Compd., 677, 105, 10.1016/j.jallcom.2016.03.232
Lyu, 2018, Carbon, 139, 740, 10.1016/j.carbon.2018.07.037
Sun, 2013, J. Mater. Chem., 1, 6462, 10.1039/c3ta10897j
Yun, 2013, Adv. Mater., 25, 1993, 10.1002/adma.201204692
Zheng, 2014, Chem. Mater., 26, 6896, 10.1021/cm503845q
Chang, 2017, Chem. Eng. J., 312, 191, 10.1016/j.cej.2016.11.129
Qin, 2018, ACS Sustain. Chem. Eng., 6, 15708, 10.1021/acssuschemeng.8b04227
Li, 2019, ACS Sustain. Chem. Eng., 7, 13827, 10.1021/acssuschemeng.9b01779
Li, 2019, Sustainable Energy & Fuels, 3, 499, 10.1039/C8SE00449H
Wen, 2020, J. Appl. Polym. Sci., 137, 10
Fuertes, 2015, ACS Appl. Mater. Interfaces, 7, 4344, 10.1021/am508794f
Sevilla, 2014, ACS Nano, 8, 5069, 10.1021/nn501124h
Li, 2019, Carbon, 144, 540, 10.1016/j.carbon.2018.12.061
Li, 2016, Nanomater. Energy, 19, 165, 10.1016/j.nanoen.2015.10.038
Yu, 2015, J. Mater. Chem., 3, 15792, 10.1039/C5TA02743H
Lei, 2013, J. Mater. Chem., 1, 6037, 10.1039/c3ta01638b
Chen, 2015, Mater. Lett., 157, 30, 10.1016/j.matlet.2015.05.082
Chen, 2016, J. Mater. Sci., 51, 4601, 10.1007/s10853-016-9774-1
Tian, 2019, ACS Appl. Mater. Interfaces, 11, 43509, 10.1021/acsami.9b15058
Zhao, 2015, Electrochim. Acta, 154, 110, 10.1016/j.electacta.2014.12.052
Liu, 2018, Carbon, 130, 680, 10.1016/j.carbon.2018.01.046
Zhang, 2017, Nano Lett., 17, 3097, 10.1021/acs.nanolett.7b00533
Chen, 2018, Small, 14, 8
Sun, 2016, Electrochim. Acta, 194, 168, 10.1016/j.electacta.2016.02.066
Gopalakrishnan, 2018, ChemElectroChem, 5, 531, 10.1002/celc.201700962
Li, 2015, Electrochim. Acta, 164, 252, 10.1016/j.electacta.2015.02.218
Geng, 2016, Electrochim. Acta, 191, 854, 10.1016/j.electacta.2016.01.148
Zhang, 2018, J. Mater. Chem., 6, 2353, 10.1039/C7TA09644E
Li, 2019, Fuel Process. Technol., 192, 239, 10.1016/j.fuproc.2019.04.037
Wen, 2019, Nanotechnology, 30, 295703, 10.1088/1361-6528/ab0ee0
Wang, 2014, Carbon, 67, 119, 10.1016/j.carbon.2013.09.070
Chen, 2015, RSC Adv., 5, 98177, 10.1039/C5RA15967A
He, 2013, J. Mater. Chem., 1, 9440, 10.1039/c3ta10501f
Zhu, 2015, J. Mater. Chem., 3, 22266, 10.1039/C5TA04646G
Li, 2019, Carbon, 141, 739, 10.1016/j.carbon.2018.09.061
Gao, 2016, J. Mater. Chem., 4, 7445, 10.1039/C6TA01314G
Zhang, 2016, Electrochim. Acta, 196, 189, 10.1016/j.electacta.2016.02.050
Kim, 2018, Carbon, 126, 215, 10.1016/j.carbon.2017.10.020
Zhang, 2019, ACS Sustain. Chem. Eng., 7, 5717, 10.1021/acssuschemeng.8b05024
Fuertes, 2015, ACS Appl. Mater. Interfaces, 7, 4344, 10.1021/am508794f
Luo, 2016, Carbon, 100, 214, 10.1016/j.carbon.2016.01.004
Liu, 2016, Carbon, 100, 664, 10.1016/j.carbon.2016.01.069
Sun, 2019, J. Alloys Compd., 803, 401, 10.1016/j.jallcom.2019.06.212
Wu, 2019, Carbon, 153, 225, 10.1016/j.carbon.2019.07.020
Jiang, 2019, J. Power Sources, 409, 13, 10.1016/j.jpowsour.2018.10.086
Osman, 2018, J. Power Sources, 391, 162, 10.1016/j.jpowsour.2018.04.081
Jayaramulu, 2018, Adv. Mater., 30, 9, 10.1002/adma.201705789
Xiong, 2017, J. Mater. Chem., 5, 18242, 10.1039/C7TA05880B
Sun, 2017, ACS Appl. Mater. Interfaces, 9, 26088, 10.1021/acsami.7b07877
Hu, 2014, J. Mater. Chem., 2, 11753, 10.1039/C4TA01269K
Liu, 2016, Nanomater. Energy, 22, 255, 10.1016/j.nanoen.2016.02.022
Wang, 2017, Nat. Commun., 8, 9, 10.1038/s41467-017-00020-w
Chen, 2016, Nanomater. Energy, 25, 193, 10.1016/j.nanoen.2016.04.037
Peng, 2019, Advanced Energy Materials, 9, 9
Wu, 2015, Nanomater. Energy, 13, 527, 10.1016/j.nanoen.2015.03.013
Ma, 2019, J. Mater. Chem., 7, 7591, 10.1039/C9TA00038K
Qi, 2018, Chemistry, 24, 18097, 10.1002/chem.201804302
Qiao, 2014, Bioresour. Technol., 163, 386, 10.1016/j.biortech.2014.04.095
Hao, 2014, Nanoscale, 6, 12120, 10.1039/C4NR03574G
Chen, 2015, Electrochim. Acta, 180, 241, 10.1016/j.electacta.2015.08.133
Song, 2015, J. Mater. Chem., 3, 18154, 10.1039/C5TA04721H
Luo, 2015, J. Mater. Chem., 3, 3667, 10.1039/C4TA05843G
Zhao, 2015, ACS Appl. Mater. Interfaces, 7, 1132, 10.1021/am506815f
Guo, 2016, ACS Appl. Mater. Interfaces, 8, 33626, 10.1021/acsami.6b11162
Ma, 2016, Chem. Commun., 52, 6673, 10.1039/C6CC02147F
Zhang, 2016, ChemSusChem, 9, 932, 10.1002/cssc.201501624
Sun, 2020, Chin. Chem. Lett., 31, 2235, 10.1016/j.cclet.2019.11.023
Salinas-Torres, 2016, J. Power Sources, 326, 641, 10.1016/j.jpowsour.2016.03.096
Qi, 2017, Electrochim. Acta, 246, 59, 10.1016/j.electacta.2017.05.192
Li, 2017, Appl. Surf. Sci., 416, 918, 10.1016/j.apsusc.2017.04.162
Guo, 2017, Green Chem., 19, 2595, 10.1039/C7GC00506G
Huang, 2017, Electrochim. Acta, 258, 504, 10.1016/j.electacta.2017.11.092
Li, 2017, Electrochim. Acta, 235, 561, 10.1016/j.electacta.2017.03.147
Zheng, 2017, J. Power Sources, 366, 270, 10.1016/j.jpowsour.2017.09.034
Liang, 2017, Microporous Mesoporous Mater., 251, 77, 10.1016/j.micromeso.2017.05.044
Demir, 2017, RSC Adv., 7, 42430, 10.1039/C7RA07984B
Chen, 2017, Sci. Rep., 7, 7362, 10.1038/s41598-017-06730-x
Gao, 2018, ACS Appl. Mater. Interfaces, 10, 28918, 10.1021/acsami.8b05891
Sun, 2018, Appl. Surf. Sci., 427, 807, 10.1016/j.apsusc.2017.07.220
Yang, 2018, Carbon, 127, 557, 10.1016/j.carbon.2017.11.050
Ouyang, 2018, Chem. Eng. J., 352, 459, 10.1016/j.cej.2018.06.184
Zhou, 2018, Carbohydr. Polym., 198, 364, 10.1016/j.carbpol.2018.06.095
Yu, 2018, ChemSusChem, 11, 1678, 10.1002/cssc.201800202
Zhang, 2018, J. Colloid Interface Sci., 530, 338, 10.1016/j.jcis.2018.06.076
Huo, 2018, J. Power Sources, 387, 81, 10.1016/j.jpowsour.2018.03.061
Guo, 2018, ACS Sustain. Chem. Eng., 6, 11441, 10.1021/acssuschemeng.8b01435
Lin, 2019, ACS Sustain. Chem. Eng., 7, 3389, 10.1021/acssuschemeng.8b05593
Zeng, 2019, Appl. Surf. Sci., 467–468, 229, 10.1016/j.apsusc.2018.10.089
Hu, 2019, J. Alloys Compd., 785, 110, 10.1016/j.jallcom.2019.01.160
Yang, 2019, Carbon, 147, 540, 10.1016/j.carbon.2019.03.023
Wan, 2019, J. Alloys Compd., 790, 760, 10.1016/j.jallcom.2019.03.241
Huang, 2019, Journal of the Taiwan Institute of Chemical Engineers, 96, 672, 10.1016/j.jtice.2018.12.024
Wang, 2020, Chem. Eng. J., 384
Wang, 2018, J. Mater. Sci., 54, 4917, 10.1007/s10853-018-03215-8
Shi, 2019, Sustainable Energy & Fuels, 3, 1201, 10.1039/C8SE00574E
Qie, 2013, Energy Environ. Sci., 6, 10.1039/c3ee41638k
Guan, 2018, ACS Sustain. Chem. Eng., 7, 2116, 10.1021/acssuschemeng.8b04736
Yun, 2013, J. Power Sources, 234, 285, 10.1016/j.jpowsour.2013.01.169
Guo, 2014, J. Power Sources, 252, 235, 10.1016/j.jpowsour.2013.11.114
Li, 2014, Chemistry, 20, 13314, 10.1002/chem.201402897
Zhou, 2015, Electrochim. Acta, 180, 1007, 10.1016/j.electacta.2015.09.038
Li, 2015, J. Mater. Chem., 3, 14817, 10.1039/C5TA02702K
Zhou, 2015, RSC Adv., 5, 46947, 10.1039/C5RA07807E
Yao, 2016, RSC Adv., 6, 43748, 10.1039/C5RA27000F
Hu, 2018, J. Electroanal. Chem., 823, 54, 10.1016/j.jelechem.2018.05.034
Wang, 2019, Microporous Mesoporous Mater., 282, 114, 10.1016/j.micromeso.2019.03.031
Bai, 2017, ACS Sustain. Chem. Eng., 5, 9390, 10.1021/acssuschemeng.7b02488
Miaoa, 2019, Chin. Chem. Lett., 30, 1445, 10.1016/j.cclet.2019.03.010
Guan, 2017, J. Mater. Chem., 5, 15869, 10.1039/C7TA02966G
Liu, 2017, J. Power Sources, 361, 70, 10.1016/j.jpowsour.2017.06.058
Wang, 2018, Appl. Surf. Sci., 435, 424, 10.1016/j.apsusc.2017.11.103
Wang, 2018, ChemSusChem, 11, 3932, 10.1002/cssc.201801892
Mehare, 2017, Energy Fuels, 32, 908, 10.1021/acs.energyfuels.7b02305
Wang, 2019, ChemSusChem, 12, 3541, 10.1002/cssc.201901137
Zhou, 2019, J. Colloid Interface Sci., 545, 25, 10.1016/j.jcis.2019.03.010
Yu, 2009, J. Phys. Chem. Lett., 1, 467, 10.1021/jz9003137
Fan, 2010, Adv. Mater., 22, 3723, 10.1002/adma.201001029
Xu, 2019, Carbon, 152, 134, 10.1016/j.carbon.2019.06.005
Jiang, 2015, Nanomater. Energy, 11, 471, 10.1016/j.nanoen.2014.11.007
Pham, 2015, ACS Nano, 9, 2018, 10.1021/nn507079x
Yan, 2010, Carbon, 48, 1731, 10.1016/j.carbon.2010.01.014
Lei, 2011, Energy Environ. Sci., 4, 1866, 10.1039/c1ee01094h
Guo, 2011, Energy Environ. Sci., 4, 4504, 10.1039/c1ee01676h
Ma, 2014, Electrochim. Acta, 115, 566, 10.1016/j.electacta.2013.11.028
Li, 2018, Carbon, 129, 236, 10.1016/j.carbon.2017.11.099
Kshetri, 2020, Chem. Eng. J., 380, 11, 10.1016/j.cej.2019.122543
Jiang, 2016, J. Power Sources, 307, 190, 10.1016/j.jpowsour.2015.12.081